These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 11851592)
1. Modulation of vascular tone and reactivity by nitric oxide in porcine pulmonary arteries and veins. Bäck M; Walch L; Norel X; Gascard JP; Mazmanian G; Brink C Acta Physiol Scand; 2002 Jan; 174(1):9-15. PubMed ID: 11851592 [TBL] [Abstract][Full Text] [Related]
2. Relaxant effects of carbon monoxide compared with nitric oxide in pulmonary and systemic vessels of newborn piglets. Villamor E; Pérez-Vizcaíno F; Cogolludo AL; Conde-Oviedo J; Zaragozá-Arnáez F; López-López JG; Tamargo J Pediatr Res; 2000 Oct; 48(4):546-53. PubMed ID: 11004249 [TBL] [Abstract][Full Text] [Related]
3. Role of superoxide anion on basal and stimulated nitric oxide activity in neonatal piglet pulmonary vessels. Villamor E; Kessels CG; Fischer MA; Bast A; de Mey JG; Blanco CE Pediatr Res; 2003 Sep; 54(3):372-81. PubMed ID: 12788981 [TBL] [Abstract][Full Text] [Related]
4. Endothelium-dependent relaxations in sheep pulmonary arteries and veins: resistance to block by NG-nitro-L-arginine in pulmonary hypertension. Kemp BK; Smolich JJ; Ritchie BC; Cocks TM Br J Pharmacol; 1995 Nov; 116(5):2457-67. PubMed ID: 8581285 [TBL] [Abstract][Full Text] [Related]
5. Differential role of vasoactive prostanoids in porcine and human isolated pulmonary arteries in response to endothelium-dependent relaxants. Lawrence RN; Clelland C; Beggs D; Salama FD; Dunn WR; Wilson VG Br J Pharmacol; 1998 Nov; 125(6):1128-37. PubMed ID: 9863638 [TBL] [Abstract][Full Text] [Related]
6. Prostacyclin-induced relaxations of small porcine pulmonary arteries are enhanced by the basal release of endothelium-derived nitric oxide through an effect on cyclic GMP-inhibited-cyclic AMP phosphodiesterase. Zellers TM; Wu YQ; McCormick J; Vanhoutte PM Acta Pharmacol Sin; 2000 Feb; 21(2):131-8. PubMed ID: 11263259 [TBL] [Abstract][Full Text] [Related]
7. Relaxation by bradykinin in porcine ciliary artery. Role of nitric oxide and K(+)-channels. Zhu P; Bény JL; Flammer J; Lüscher TF; Haefliger IO Invest Ophthalmol Vis Sci; 1997 Aug; 38(9):1761-7. PubMed ID: 9286264 [TBL] [Abstract][Full Text] [Related]
8. Role of protein kinase G in nitric oxide deficiency-induced supersensitivity to nitrovasodilator in rat pulmonary artery. Gupta PK; Subramani J; Singh TU; Leo MD; Sikarwar AS; Prakash VR; Mishra SK J Cardiovasc Pharmacol; 2008 May; 51(5):450-6. PubMed ID: 18418274 [TBL] [Abstract][Full Text] [Related]
9. Prostacyclin release and receptor activation: differential control of human pulmonary venous and arterial tone. Norel X; Walch L; Gascard JP; deMontpreville V; Brink C Br J Pharmacol; 2004 Jun; 142(4):788-96. PubMed ID: 15172959 [TBL] [Abstract][Full Text] [Related]
10. Nitric oxide is the predominant mediator for neurogenic vasodilation in porcine pial veins. Ishine T; Yu JG; Asada Y; Lee TJ J Pharmacol Exp Ther; 1999 Apr; 289(1):398-404. PubMed ID: 10087030 [TBL] [Abstract][Full Text] [Related]
11. Response of normoxic pulmonary arteries of the rat in the resting and contracted state to NO synthase blockade. Steeds RP; Thompson JS; Channer KS; Morice AH Br J Pharmacol; 1997 Sep; 122(1):99-102. PubMed ID: 9298534 [TBL] [Abstract][Full Text] [Related]
12. Endothelin-1 modulates cyclic GMP production and relaxation in human pulmonary vessels. Pussard G; Gascard JP; Gorenne I; Labat C; Norel X; Dulmet E; Brink C J Pharmacol Exp Ther; 1995 Aug; 274(2):969-75. PubMed ID: 7636761 [TBL] [Abstract][Full Text] [Related]
13. Endothelium-derived nitric oxide plays a larger role in pulmonary veins than in arteries of newborn lambs. Gao Y; Zhou H; Raj JU Circ Res; 1995 Apr; 76(4):559-65. PubMed ID: 7895331 [TBL] [Abstract][Full Text] [Related]
14. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries. Prieto D; Simonsen U; Hernández M; García-Sacristán A Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568 [TBL] [Abstract][Full Text] [Related]
15. Superoxide and endothelium-dependent constriction to flow in porcine small pulmonary arteries. Liu Q; Wiener CM; Flavahan NA Br J Pharmacol; 1998 May; 124(2):331-6. PubMed ID: 9641550 [TBL] [Abstract][Full Text] [Related]
16. Nitric oxide, prostanoid and non-NO, non-prostanoid involvement in acetylcholine relaxation of isolated human small arteries. Buus NH; Simonsen U; Pilegaard HK; Mulvany MJ Br J Pharmacol; 2000 Jan; 129(1):184-92. PubMed ID: 10694219 [TBL] [Abstract][Full Text] [Related]
17. Involvement of protein kinase C in reduced relaxant responses to the NO/cyclic GMP pathway in piglet pulmonary arteries contracted by the thromboxane A2-mimetic U46619. Pérez-Vizcaíno F; Villamor E; Duarte J; Tamargo J Br J Pharmacol; 1997 Aug; 121(7):1323-33. PubMed ID: 9257910 [TBL] [Abstract][Full Text] [Related]
18. Differential relaxant responses of pulmonary arteries and veins in lung explants of guinea pigs. Shi W; Eidelman DH; Michel RP J Appl Physiol (1985); 1997 Nov; 83(5):1476-81. PubMed ID: 9375308 [TBL] [Abstract][Full Text] [Related]
19. Control of mesenteric arterial tone in vitro in humans and rats. Hutri-Kähönen N; Kähönen M; Jolma P; Wu X; Sand J; Nordback I; Ylitalo P; Arvola P; Pörsti I Naunyn Schmiedebergs Arch Pharmacol; 1999 Apr; 359(4):322-30. PubMed ID: 10344531 [TBL] [Abstract][Full Text] [Related]
20. Potentiation of cyclic AMP-mediated vasorelaxation by phenylephrine in pulmonary arteries of the rat. Priest RM; Hucks D; Ward JP Br J Pharmacol; 1999 May; 127(1):291-9. PubMed ID: 10369485 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]