These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 11852050)
1. The orientation of the antibiotic peptide maculatin 1.1 in DMPG and DMPC lipid bilayers. Support for a pore-forming mechanism. Chia CS; Torres J; Cooper MA; Arkin IT; Bowie JH FEBS Lett; 2002 Feb; 512(1-3):47-51. PubMed ID: 11852050 [TBL] [Abstract][Full Text] [Related]
2. Interactions of the Australian tree frog antimicrobial peptides aurein 1.2, citropin 1.1 and maculatin 1.1 with lipid model membranes: differential scanning calorimetric and Fourier transform infrared spectroscopic studies. Seto GW; Marwaha S; Kobewka DM; Lewis RN; Separovic F; McElhaney RN Biochim Biophys Acta; 2007 Nov; 1768(11):2787-800. PubMed ID: 17825246 [TBL] [Abstract][Full Text] [Related]
3. Structural effects of the antimicrobial peptide maculatin 1.1 on supported lipid bilayers. Fernandez DI; Le Brun AP; Lee TH; Bansal P; Aguilar MI; James M; Separovic F Eur Biophys J; 2013 Jan; 42(1):47-59. PubMed ID: 22354331 [TBL] [Abstract][Full Text] [Related]
4. Maculatin 1.1, an anti-microbial peptide from the Australian tree frog, Litoria genimaculata solution structure and biological activity. Chia BC; Carver JA; Mulhern TD; Bowie JH Eur J Biochem; 2000 Apr; 267(7):1894-908. PubMed ID: 10727928 [TBL] [Abstract][Full Text] [Related]
5. Proline facilitates membrane insertion of the antimicrobial peptide maculatin 1.1 via surface indentation and subsequent lipid disordering. Fernandez DI; Lee TH; Sani MA; Aguilar MI; Separovic F Biophys J; 2013 Apr; 104(7):1495-507. PubMed ID: 23561526 [TBL] [Abstract][Full Text] [Related]
6. Membrane binding and perturbation studies of the antimicrobial peptides caerin, citropin, and maculatin. Chia CS; Gong Y; Bowie JH; Zuegg J; Cooper MA Biopolymers; 2011; 96(2):147-57. PubMed ID: 20564028 [TBL] [Abstract][Full Text] [Related]
7. Solution structure and membrane interactions of the antimicrobial peptide fallaxidin 4.1a: an NMR and QCM study. Sherman PJ; Jackway RJ; Gehman JD; Praporski S; McCubbin GA; Mechler A; Martin LL; Separovic F; Bowie JH Biochemistry; 2009 Dec; 48(50):11892-901. PubMed ID: 19894755 [TBL] [Abstract][Full Text] [Related]
8. ATR-FTIR study of the structure and orientation of transmembrane domains of the Saccharomyces cerevisiae alpha-mating factor receptor in phospholipids. Ding FX; Xie H; Arshava B; Becker JM; Naider F Biochemistry; 2001 Jul; 40(30):8945-54. PubMed ID: 11467956 [TBL] [Abstract][Full Text] [Related]
9. A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures. Balatti GE; Martini MF; Pickholz M J Mol Model; 2018 Jul; 24(8):208. PubMed ID: 30019106 [TBL] [Abstract][Full Text] [Related]
10. Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs. Cheng JT; Hale JD; Elliot M; Hancock RE; Straus SK Biophys J; 2009 Jan; 96(2):552-65. PubMed ID: 19167304 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the structure and membrane interaction of the antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs. Pan YL; Cheng JT; Hale J; Pan J; Hancock RE; Straus SK Biophys J; 2007 Apr; 92(8):2854-64. PubMed ID: 17259271 [TBL] [Abstract][Full Text] [Related]
12. Direct visualization of membrane leakage induced by the antibiotic peptides: maculatin, citropin, and aurein. Ambroggio EE; Separovic F; Bowie JH; Fidelio GD; Bagatolli LA Biophys J; 2005 Sep; 89(3):1874-81. PubMed ID: 15994901 [TBL] [Abstract][Full Text] [Related]
13. The maculatin peptides from the skin glands of the tree frog Litoria genimaculata: a comparison of the structures and antibacterial activities of maculatin 1.1 and caerin 1.1. Rozek T; Waugh RJ; Steinborner ST; Bowie JH; Tyler MJ; Wallace JC J Pept Sci; 1998 Apr; 4(2):111-5. PubMed ID: 9620615 [TBL] [Abstract][Full Text] [Related]
14. Lipid-induced conformation of helix 7 from the pore-forming domain of the Bacillus thuringiensis Cry4Ba toxin: implications for toxicity mechanism. Tiewsiri K; Fischer WB; Angsuthanasombat C Arch Biochem Biophys; 2009 Feb; 482(1-2):17-24. PubMed ID: 19103150 [TBL] [Abstract][Full Text] [Related]
15. Interactions of a synthetic Leu-Lys-rich antimicrobial peptide with phospholipid bilayers. Fernandez DI; Sani MA; Gehman JD; Hahm KS; Separovic F Eur Biophys J; 2011 Apr; 40(4):471-80. PubMed ID: 21225256 [TBL] [Abstract][Full Text] [Related]
16. Lipid composition regulates the conformation and insertion of the antimicrobial peptide maculatin 1.1. Sani MA; Whitwell TC; Separovic F Biochim Biophys Acta; 2012 Feb; 1818(2):205-11. PubMed ID: 21801711 [TBL] [Abstract][Full Text] [Related]
17. Membrane translocation mechanism of the antimicrobial peptide buforin 2. Kobayashi S; Chikushi A; Tougu S; Imura Y; Nishida M; Yano Y; Matsuzaki K Biochemistry; 2004 Dec; 43(49):15610-6. PubMed ID: 15581374 [TBL] [Abstract][Full Text] [Related]
18. Structure and orientation study of Ebola fusion peptide inserted in lipid membrane models. Agopian A; Castano S Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):117-26. PubMed ID: 24055820 [TBL] [Abstract][Full Text] [Related]
19. The interactions of histidine-containing amphipathic helical peptide antibiotics with lipid bilayers. The effects of charges and pH. Vogt TC; Bechinger B J Biol Chem; 1999 Oct; 274(41):29115-21. PubMed ID: 10506166 [TBL] [Abstract][Full Text] [Related]
20. Interaction of antimicrobial peptides from Australian amphibians with lipid membranes. Marcotte I; Wegener KL; Lam YH; Chia BC; de Planque MR; Bowie JH; Auger M; Separovic F Chem Phys Lipids; 2003 Jan; 122(1-2):107-20. PubMed ID: 12598042 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]