BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 11854152)

  • 1. Identification of the human cytochromes P450 responsible for atomoxetine metabolism.
    Ring BJ; Gillespie JS; Eckstein JA; Wrighton SA
    Drug Metab Dispos; 2002 Mar; 30(3):319-23. PubMed ID: 11854152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of paroxetine on the pharmacokinetics of atomoxetine and its metabolites in different CYP2D6 genotypes.
    Jung EH; Lee YJ; Kim DH; Kang P; Lim CW; Cho CK; Jang CG; Lee SY; Bae JW
    Arch Pharm Res; 2020 Dec; 43(12):1356-1363. PubMed ID: 33245517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Timolol metabolism in human liver microsomes is mediated principally by CYP2D6.
    Volotinen M; Turpeinen M; Tolonen A; Uusitalo J; Mäenpää J; Pelkonen O
    Drug Metab Dispos; 2007 Jul; 35(7):1135-41. PubMed ID: 17431033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Approach to predict the contribution of cytochrome P450 enzymes to drug metabolism in the early drug-discovery stage: the effect of the expression of cytochrome b(5) with recombinant P450 enzymes.
    Emoto C; Iwasaki K
    Xenobiotica; 2007 Sep; 37(9):986-99. PubMed ID: 17896325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the human cytochromes p450 responsible for in vitro formation of R- and S-norfluoxetine.
    Ring BJ; Eckstein JA; Gillespie JS; Binkley SN; VandenBranden M; Wrighton SA
    J Pharmacol Exp Ther; 2001 Jun; 297(3):1044-50. PubMed ID: 11356927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interactions of a selective protein kinase C beta inhibitor with the human cytochromes P450.
    Ring BJ; Gillespie JS; Binkley SN; Campanale KM; Wrighton SA
    Drug Metab Dispos; 2002 Sep; 30(9):957-61. PubMed ID: 12167559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disposition and metabolic fate of atomoxetine hydrochloride: the role of CYP2D6 in human disposition and metabolism.
    Sauer JM; Ponsler GD; Mattiuz EL; Long AJ; Witcher JW; Thomasson HR; Desante KA
    Drug Metab Dispos; 2003 Jan; 31(1):98-107. PubMed ID: 12485958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. O-Dealkylation of fluoxetine in relation to CYP2C19 gene dose and involvement of CYP3A4 in human liver microsomes.
    Liu ZQ; Zhu B; Tan YF; Tan ZR; Wang LS; Huang SL; Shu Y; Zhou HH
    J Pharmacol Exp Ther; 2002 Jan; 300(1):105-11. PubMed ID: 11752104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of metabolic pathways involved in the biotransformation of tolperisone by human microsomal enzymes.
    Dalmadi B; Leibinger J; Szeberényi S; Borbás T; Farkas S; Szombathelyi Z; Tihanyi K
    Drug Metab Dispos; 2003 May; 31(5):631-6. PubMed ID: 12695352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro metabolism of the calmodulin antagonist DY-9760e (3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate) by human liver microsomes: involvement of cytochromes p450 in atypical kinetics and potential drug interactions.
    Tachibana S; Fujimaki Y; Yokoyama H; Okazaki O; Sudo K
    Drug Metab Dispos; 2005 Nov; 33(11):1628-36. PubMed ID: 16049129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of CYP2C19 genetic polymorphisms on atomoxetine pharmacokinetics.
    Choi CI; Bae JW; Lee YJ; Lee HI; Jang CG; Lee SY
    J Clin Psychopharmacol; 2014 Feb; 34(1):139-42. PubMed ID: 24346747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of three cytochrome P450 isozymes involved in N-demethylation of citalopram enantiomers in human liver microsomes.
    Rochat B; Amey M; Gillet M; Meyer UA; Baumann P
    Pharmacogenetics; 1997 Feb; 7(1):1-10. PubMed ID: 9110356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relative contributions of the five major human cytochromes P450, 1A2, 2C9, 2C19, 2D6, and 3A4, to the hepatic metabolism of the proteasome inhibitor bortezomib.
    Uttamsingh V; Lu C; Miwa G; Gan LS
    Drug Metab Dispos; 2005 Nov; 33(11):1723-8. PubMed ID: 16103134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of two major metabolites of prasugrel, a thienopyridine antiplatelet agent, with the cytochromes P450.
    Rehmel JL; Eckstein JA; Farid NA; Heim JB; Kasper SC; Kurihara A; Wrighton SA; Ring BJ
    Drug Metab Dispos; 2006 Apr; 34(4):600-7. PubMed ID: 16415119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomoxetine hydrochloride: clinical drug-drug interaction prediction and outcome.
    Sauer JM; Long AJ; Ring B; Gillespie JS; Sanburn NP; DeSante KA; Petullo D; VandenBranden MR; Jensen CB; Wrighton SA; Smith BP; Read HA; Witcher JW
    J Pharmacol Exp Ther; 2004 Feb; 308(2):410-8. PubMed ID: 14610241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of cytochrome P450 isoforms involved in the metabolism of paroxetine and estimation of their importance for human paroxetine metabolism using a population-based simulator.
    Jornil J; Jensen KG; Larsen F; Linnet K
    Drug Metab Dispos; 2010 Mar; 38(3):376-85. PubMed ID: 20007670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of CYP3A4, CYP2C8, and CYP2D6 in the metabolism of (R)- and (S)-methadone in vitro.
    Wang JS; DeVane CL
    Drug Metab Dispos; 2003 Jun; 31(6):742-7. PubMed ID: 12756206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro metabolism of chloroquine: identification of CYP2C8, CYP3A4, and CYP2D6 as the main isoforms catalyzing N-desethylchloroquine formation.
    Projean D; Baune B; Farinotti R; Flinois JP; Beaune P; Taburet AM; Ducharme J
    Drug Metab Dispos; 2003 Jun; 31(6):748-54. PubMed ID: 12756207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Atomoxetine Biotransformation and Implications for Development of PBPK Models for Dose Individualization in Children.
    Dinh JC; Pearce RE; Van Haandel L; Gaedigk A; Leeder JS
    Drug Metab Dispos; 2016 Jul; 44(7):1070-9. PubMed ID: 27052878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of dexfenfluramine in human liver microsomes and by recombinant enzymes: role of CYP2D6 and 1A2.
    Haritos VS; Ching MS; Ghabrial H; Gross AS; Taavitsainen P; Pelkonen O; Battaglia SE; Smallwood RA; Ahokas JT
    Pharmacogenetics; 1998 Oct; 8(5):423-32. PubMed ID: 9825834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.