BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 11854291)

  • 1. Generality of the branched pathway in transcription initiation by Escherichia coli RNA polymerase.
    Susa M; Sen R; Shimamoto N
    J Biol Chem; 2002 May; 277(18):15407-12. PubMed ID: 11854291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational switching of Escherichia coli RNA polymerase-promoter binary complex is facilitated by elongation factor GreA and GreB.
    Sen R; Nagai H; Shimamoto N
    Genes Cells; 2001 May; 6(5):389-401. PubMed ID: 11380617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Domain 1.1 of the sigma(70) subunit of Escherichia coli RNA polymerase modulates the formation of stable polymerase/promoter complexes.
    Vuthoori S; Bowers CW; McCracken A; Dombroski AJ; Hinton DM
    J Mol Biol; 2001 Jun; 309(3):561-72. PubMed ID: 11397080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Escherichia coli RNA polymerase defective in transcription due to its overproduction of abortive initiation products.
    Jin DJ; Turnbough CL
    J Mol Biol; 1994 Feb; 236(1):72-80. PubMed ID: 7508986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction in abortive transcription from the lambdaPR promoter by mutations in region 3 of the sigma70 subunit of Escherichia coli RNA polymerase.
    Sen R; Nagai H; Hernandez VJ; Shimamoto N
    J Biol Chem; 1998 Apr; 273(16):9872-7. PubMed ID: 9545328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of transcription initiation and promoter escape by
    Henderson KL; Felth LC; Molzahn CM; Shkel I; Wang S; Chhabra M; Ruff EF; Bieter L; Kraft JE; Record MT
    Proc Natl Acad Sci U S A; 2017 Apr; 114(15):E3032-E3040. PubMed ID: 28348246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reiterative transcription initiation from galP2 promoter of Escherichia coli.
    Rostoks N; Park S; Choy HE
    Biochim Biophys Acta; 2000 Apr; 1491(1-3):185-95. PubMed ID: 10760580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characteristics of the rrnD promoters of Escherichia coli.
    Langert W; Meuthen M; Mueller K
    J Biol Chem; 1991 Nov; 266(32):21608-15. PubMed ID: 1939190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separate contributions of UhpA and CAP to activation of transcription of the uhpT promoter of Escherichia coli.
    Olekhnovich IN; Dahl JL; Kadner RJ
    J Mol Biol; 1999 Oct; 292(5):973-86. PubMed ID: 10512697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of discontinuities in the DNA template on abortive initiation and promoter escape by Escherichia coli RNA polymerase.
    Wang Q; Tullius TD; Levin JR
    J Biol Chem; 2007 Sep; 282(37):26917-26927. PubMed ID: 17650506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beta subunit residues 186-433 and 436-445 are commonly used by Esigma54 and Esigma70 RNA polymerase for open promoter complex formation.
    Wigneshweraraj SR; Nechaev S; Severinov K; Buck M
    J Mol Biol; 2002 Jun; 319(5):1067-83. PubMed ID: 12079348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymerase arrest at the lambdaP(R) promoter during transcription initiation.
    Sen R; Nagai H; Shimamoto N
    J Biol Chem; 2000 Apr; 275(15):10899-904. PubMed ID: 10753887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic and structural characterisation of multiple steps during complex formation between E. coli RNA polymerase and the tetR promoter from pSC101.
    Duval-Valentin G; Ehrlich R
    Nucleic Acids Res; 1987 Jan; 15(2):575-94. PubMed ID: 3547327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salt-dependent binding of Escherichia coli RNA polymerase to DNA and specific transcription by the core enzyme and holoenzyme.
    Wheeler AR; Woody AY; Woody RW
    Biochemistry; 1987 Jun; 26(12):3322-30. PubMed ID: 3307903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic studies and structural models of the association of E. coli sigma(70) RNA polymerase with the lambdaP(R) promoter: large scale conformational changes in forming the kinetically significant intermediates.
    Saecker RM; Tsodikov OV; McQuade KL; Schlax PE; Capp MW; Record MT
    J Mol Biol; 2002 Jun; 319(3):649-71. PubMed ID: 12054861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic analysis of T7 RNA polymerase transcription initiation from promoters containing single-stranded regions.
    Maslak M; Martin CT
    Biochemistry; 1993 Apr; 32(16):4281-5. PubMed ID: 8476857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of contacts between T7 RNA polymerase and its promoter reveal features in common with multisubunit RNA polymerases.
    Place C; Oddos J; Buc H; McAllister WT; Buckle M
    Biochemistry; 1999 Apr; 38(16):4948-57. PubMed ID: 10213596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repression of transcription initiation at 434 P(R) by 434 repressor: effects on transition of a closed to an open promoter complex.
    Xu J; Koudelka GB
    J Mol Biol; 2001 Jun; 309(3):573-87. PubMed ID: 11397081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping the initiation sites of in vitro transcripts of bacteriophage S13.
    Ringuette MJ; Spencer JH
    Biochim Biophys Acta; 1994 Aug; 1218(3):331-8. PubMed ID: 8049259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The bacterial DNA-binding protein H-NS represses ribosomal RNA transcription by trapping RNA polymerase in the initiation complex.
    Schröder O; Wagner R
    J Mol Biol; 2000 May; 298(5):737-48. PubMed ID: 10801345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.