These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 118544)
1. Membrane modulation in a methylotrophic bacterium Methylococcus capsulatus (Texas) as a function of growth substrate. Hyder SL; Meyers A; Cayer ML Tissue Cell; 1979; 11(4):597-610. PubMed ID: 118544 [TBL] [Abstract][Full Text] [Related]
2. Ultrastructure of intracytoplasmic membranes of Methanomonas margaritae cells grown under different conditions. Takeda K; Tanaka K Antonie Van Leeuwenhoek; 1980; 46(1):15-25. PubMed ID: 6772101 [TBL] [Abstract][Full Text] [Related]
3. Intracytoplasmic membrane, phospholipid, and sterol content of Methylobacterium organophilum cells grown under different conditions. Patt TE; Hanson RS J Bacteriol; 1978 May; 134(2):636-44. PubMed ID: 96093 [TBL] [Abstract][Full Text] [Related]
4. Carbon isotopic fractionation in lipids from methanotrophic bacteria: relevance for interpretation of the geochemical record of biomarkers. Summons RE; Jahnke LL; Roksandic Z Geochim Cosmochim Acta; 1994; 58(13):2853-63. PubMed ID: 11540111 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of cell constituents by methane-grown Methylococcus capsulatus and Methanomonas methanooxidans. Lawrence AJ; Kemp MB; Quayle JR Biochem J; 1970 Feb; 116(4):631-9. PubMed ID: 5435492 [TBL] [Abstract][Full Text] [Related]
6. Obligate methylotrophy: evaluation of dimethyl ether as a C1 compound. Meyers AJ J Bacteriol; 1982 May; 150(2):966-8. PubMed ID: 6802804 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of dimethyl ether and methane oxidation in Methylococcus capsulatus and Methylosinus trichosporium. Patel R; Hou CT; Felix A J Bacteriol; 1976 May; 126(2):1017-9. PubMed ID: 4428 [TBL] [Abstract][Full Text] [Related]
8. Methanol suppression of trichloroethylene degradation by Methylosinus trichosporium (OB3b) and methane-oxidizing mixed cultures. Eng W; Palumbo AV; Sriharan S; Strandberg GW Appl Biochem Biotechnol; 1991; 28-29():887-99. PubMed ID: 1929390 [TBL] [Abstract][Full Text] [Related]
9. [Physiological, biochemical, and cytological characteristics of a halotolerant and alkalitolerant methanotroph grown on methanol]. Eshinimaev BTs; Khmelenina VN; Sakharovskiĭ VG; Suzina NE; Trotsenko IuA Mikrobiologiia; 2002; 71(5):596-603. PubMed ID: 12449624 [TBL] [Abstract][Full Text] [Related]
10. Genetics of methane and methanol oxidation in gram-negative methylotrophic bacteria. Barta TM; Hanson RS Antonie Van Leeuwenhoek; 1993-1994; 64(2):109-20. PubMed ID: 8092853 [TBL] [Abstract][Full Text] [Related]
11. Microbial oxidation of gaseous hydrocarbons: epoxidation of C2 to C4 n-alkenes by methylotrophic bacteria. Hou CT; Patel R; Laskin AI; Barnabe N Appl Environ Microbiol; 1979 Jul; 38(1):127-34. PubMed ID: 39502 [TBL] [Abstract][Full Text] [Related]
14. Microbial oxidation of methane and methanol: isolation of methane-utilizing bacteria and characterization of a facultative methane-utilizing isolate. Patel RN; Hou CT; Felix A J Bacteriol; 1978 Oct; 136(1):352-8. PubMed ID: 101517 [TBL] [Abstract][Full Text] [Related]
15. The occurrence and identification of intracellular polyglucose storage granules in Methylococcus NCIB 11083 grown in chemostat culture on methane. Linton JD; Cripps RE Arch Microbiol; 1978 Apr; 117(1):41-8. PubMed ID: 98125 [TBL] [Abstract][Full Text] [Related]
16. Core Metabolism Shifts during Growth on Methanol versus Methane in the Methanotroph Fu Y; He L; Reeve J; Beck DAC; Lidstrom ME mBio; 2019 Apr; 10(2):. PubMed ID: 30967465 [No Abstract] [Full Text] [Related]
17. Fluorescence-based analysis of the intracytoplasmic membranes of type I methanotrophs. Whiddon KT; Gudneppanavar R; Hammer TJ; West DA; Konopka MC Microb Biotechnol; 2019 Sep; 12(5):1024-1033. PubMed ID: 31264365 [TBL] [Abstract][Full Text] [Related]
18. (14C)acetate assimilation by a type I obligate methylotroph, Methylococcus capsulatus. Patel RN; Hoare SL; Hoare DS; Taylor BF Appl Environ Microbiol; 1977 Nov; 34(5):607-10. PubMed ID: 412469 [TBL] [Abstract][Full Text] [Related]
19. Methyl Selenol as a Precursor in Selenite Reduction to Se/S Species by Methane-Oxidizing Bacteria. Eswayah AS; Hondow N; Scheinost AC; Merroun M; Romero-González M; Smith TJ; Gardiner PHE Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31519658 [TBL] [Abstract][Full Text] [Related]