BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 11854414)

  • 1. Interactions of elongation factor 1alpha with F-actin and beta-actin mRNA: implications for anchoring mRNA in cell protrusions.
    Liu G; Grant WM; Persky D; Latham VM; Singer RH; Condeelis J
    Mol Biol Cell; 2002 Feb; 13(2):579-92. PubMed ID: 11854414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of Rho1p target Bni1p with F-actin-binding elongation factor 1alpha: implication in Rho1p-regulated reorganization of the actin cytoskeleton in Saccharomyces cerevisiae.
    Umikawa M; Tanaka K; Kamei T; Shimizu K; Imamura H; Sasaki T; Takai Y
    Oncogene; 1998 Apr; 16(15):2011-6. PubMed ID: 9591785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overproduction of elongation factor 1alpha, an essential translational component, causes aberrant cell morphology by affecting the control of growth polarity in fission yeast.
    Suda M; Fukui M; Sogabe Y; Sato K; Morimatsu A; Arai R; Motegi F; Miyakawa T; Mabuchi I; Hirata D
    Genes Cells; 1999 Sep; 4(9):517-27. PubMed ID: 10526238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two ZBP1 KH domains facilitate beta-actin mRNA localization, granule formation, and cytoskeletal attachment.
    Farina KL; Huttelmaier S; Musunuru K; Darnell R; Singer RH
    J Cell Biol; 2003 Jan; 160(1):77-87. PubMed ID: 12507992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization of all seven messenger RNAs for the actin-polymerization nucleator Arp2/3 complex in the protrusions of fibroblasts.
    Mingle LA; Okuhama NN; Shi J; Singer RH; Condeelis J; Liu G
    J Cell Sci; 2005 Jun; 118(Pt 11):2425-33. PubMed ID: 15923655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How and why does beta-actin mRNA target?
    Condeelis J; Singer RH
    Biol Cell; 2005 Jan; 97(1):97-110. PubMed ID: 15601261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Association between elongation factor-1alpha and microtubules in vivo is domain dependent and conditional.
    Moore RC; Cyr RJ
    Cell Motil Cytoskeleton; 2000 Apr; 45(4):279-92. PubMed ID: 10744861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time visualization of ZBP1 association with beta-actin mRNA during transcription and localization.
    Oleynikov Y; Singer RH
    Curr Biol; 2003 Feb; 13(3):199-207. PubMed ID: 12573215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elongation factor 1alpha binds to the region of the metallothionein-1 mRNA implicated in perinuclear localization--importance of an internal stem-loop.
    Mickleburgh I; Chabanon H; Nury D; Fan K; Burtle B; Chrzanowska-Lightowlers Z; Hesketh J
    RNA; 2006 Jul; 12(7):1397-407. PubMed ID: 16723660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improper organization of the actin cytoskeleton affects protein synthesis at initiation.
    Gross SR; Kinzy TG
    Mol Cell Biol; 2007 Mar; 27(5):1974-89. PubMed ID: 17178834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of elongation factor 1alpha from Zea mays (ZmEF-1alpha) with F-actin and interplay with the maize actin severing protein, ZmADF3.
    Gungabissoon RA; Khan S; Hussey PJ; Maciver SK
    Cell Motil Cytoskeleton; 2001 Jun; 49(2):104-11. PubMed ID: 11443740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical characterisation of the actin-binding properties of utrophin.
    Moores CA; Kendrick-Jones J
    Cell Motil Cytoskeleton; 2000 Jun; 46(2):116-28. PubMed ID: 10891857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The nucleocapsid protein of severe acute respiratory syndrome coronavirus inhibits cell cytokinesis and proliferation by interacting with translation elongation factor 1alpha.
    Zhou B; Liu J; Wang Q; Liu X; Li X; Li P; Ma Q; Cao C
    J Virol; 2008 Jul; 82(14):6962-71. PubMed ID: 18448518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1.
    Hüttelmaier S; Zenklusen D; Lederer M; Dictenberg J; Lorenz M; Meng X; Bassell GJ; Condeelis J; Singer RH
    Nature; 2005 Nov; 438(7067):512-5. PubMed ID: 16306994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of three domains of Tetrahymena eEF1A in bundling F-actin.
    Morita K; Bunai F; Numata O
    Zoolog Sci; 2008 Jan; 25(1):22-9. PubMed ID: 18275242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elongation factor-1 alpha is a novel substrate of rho-associated kinase.
    Izawa T; Fukata Y; Kimura T; Iwamatsu A; Dohi K; Kaibuchi K
    Biochem Biophys Res Commun; 2000 Nov; 278(1):72-8. PubMed ID: 11071857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fhos, a mammalian formin, directly binds to F-actin via a region N-terminal to the FH1 domain and forms a homotypic complex via the FH2 domain to promote actin fiber formation.
    Takeya R; Sumimoto H
    J Cell Sci; 2003 Nov; 116(Pt 22):4567-75. PubMed ID: 14576350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of an actin-binding site within the talin FERM domain.
    Lee HS; Bellin RM; Walker DL; Patel B; Powers P; Liu H; Garcia-Alvarez B; de Pereda JM; Liddington RC; Volkmann N; Hanein D; Critchley DR; Robson RM
    J Mol Biol; 2004 Oct; 343(3):771-84. PubMed ID: 15465061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific interaction of KIF11 with ZBP1 regulates the transport of β-actin mRNA and cell motility.
    Song T; Zheng Y; Wang Y; Katz Z; Liu X; Chen S; Singer RH; Gu W
    J Cell Sci; 2015 Mar; 128(5):1001-10. PubMed ID: 25588836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning of a Schizosaccharomyces pombe homologue of elongation factor 1 alpha by two-hybrid selection of calmodulin-binding proteins.
    Rasmussen C; Wiebe C
    Biochem Cell Biol; 1999; 77(5):421-30. PubMed ID: 10593605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.