These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 11854452)
1. A comparison of experimental, theoretical, and numerical simulation Rayleigh-Taylor mixing rates. George E; Glimm J; Li XL; Marchese A; Xu ZL Proc Natl Acad Sci U S A; 2002 Mar; 99(5):2587-92. PubMed ID: 11854452 [TBL] [Abstract][Full Text] [Related]
2. Growth rate of Rayleigh-Taylor turbulent mixing layers with the foliation approach. Poujade O; Peybernes M Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016316. PubMed ID: 20365469 [TBL] [Abstract][Full Text] [Related]
3. Acceleration and turbulence in Rayleigh-Taylor mixing. Sreenivasan KR; Abarzhi SI Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20130267. PubMed ID: 24146015 [TBL] [Abstract][Full Text] [Related]
4. Turbulent mixing with physical mass diffusion. Liu X; George E; Bo W; Glimm J Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056301. PubMed ID: 16803031 [TBL] [Abstract][Full Text] [Related]
5. Evolution of the single-mode Rayleigh-Taylor instability under the influence of time-dependent accelerations. Ramaprabhu P; Karkhanis V; Banerjee R; Varshochi H; Khan M; Lawrie AG Phys Rev E; 2016 Jan; 93(1):013118. PubMed ID: 26871165 [TBL] [Abstract][Full Text] [Related]
6. New directions for Rayleigh-Taylor mixing. Glimm J; Sharp DH; Kaman T; Lim H Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120183. PubMed ID: 24146006 [TBL] [Abstract][Full Text] [Related]
7. Front fingering and complex dynamics driven by the interaction of buoyancy and diffusive instabilities. D'Hernoncourt J; Merkin JH; De Wit A Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):035301. PubMed ID: 17930295 [TBL] [Abstract][Full Text] [Related]
8. Small Atwood number Rayleigh-Taylor experiments. Andrews MJ; Dalziel SB Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1663-79. PubMed ID: 20211879 [TBL] [Abstract][Full Text] [Related]
9. Exploring the Atwood-number dependence of the highly nonlinear Rayleigh-Taylor instability regime in high-energy-density conditions. Rigon G; Albertazzi B; Mabey P; Michel T; Falize E; Bouffetier V; Ceurvorst L; Masse L; Koenig M; Casner A Phys Rev E; 2021 Oct; 104(4-2):045213. PubMed ID: 34781551 [TBL] [Abstract][Full Text] [Related]
10. The density ratio dependence of self-similar Rayleigh-Taylor mixing. Youngs DL Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120173. PubMed ID: 24146005 [TBL] [Abstract][Full Text] [Related]
11. Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixing. Morgan BE; Schilling O; Hartland TA Phys Rev E; 2018 Jan; 97(1-1):013104. PubMed ID: 29448443 [TBL] [Abstract][Full Text] [Related]
12. Rayleigh-Taylor instability with complex acceleration history. Dimonte G; Ramaprabhu P; Andrews M Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046313. PubMed ID: 17995112 [TBL] [Abstract][Full Text] [Related]
13. Lattice Boltzmann simulation of three-dimensional Rayleigh-Taylor instability. Liang H; Li QX; Shi BC; Chai ZH Phys Rev E; 2016 Mar; 93(3):033113. PubMed ID: 27078453 [TBL] [Abstract][Full Text] [Related]
15. Buoyancy-drag mix model obtained by multifluid interpenetration equations. Cheng B; Scannapieco AJ Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046310. PubMed ID: 16383536 [TBL] [Abstract][Full Text] [Related]
16. Stabilizing effect of anisotropic thermal diffusion on the ablative Rayleigh-Taylor instability. Masse L Phys Rev Lett; 2007 Jun; 98(24):245001. PubMed ID: 17677970 [TBL] [Abstract][Full Text] [Related]
17. Dynamical evolution of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts. Cheng B; Glimm J; Sharp DH Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):036312. PubMed ID: 12366258 [TBL] [Abstract][Full Text] [Related]
18. Bubble interaction model for hydrodynamic unstable mixing. Sohn SI Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066312. PubMed ID: 17677362 [TBL] [Abstract][Full Text] [Related]
19. Pure single-mode Rayleigh-Taylor instability for arbitrary Atwood numbers. Liu W; Wang X; Liu X; Yu C; Fang M; Ye W Sci Rep; 2020 Mar; 10(1):4201. PubMed ID: 32144289 [TBL] [Abstract][Full Text] [Related]
20. Numerical simulations of two-fluid turbulent mixing at large density ratios and applications to the Rayleigh-Taylor instability. Livescu D Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120185. PubMed ID: 24146007 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]