These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 11854452)
21. Stabilization of ablative Rayleigh-Taylor instability due to change of the Atwood number. Ye W; Zhang W; He XT Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):057401. PubMed ID: 12059764 [TBL] [Abstract][Full Text] [Related]
22. Local dissipation scales in two-dimensional Rayleigh-Taylor turbulence. Qiu X; Liu YL; Zhou Q Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043012. PubMed ID: 25375598 [TBL] [Abstract][Full Text] [Related]
23. Buoyancy driven mixing of miscible fluids by volumetric energy deposition of microwaves. Wachtor AJ; Mocko V; Williams DJ; Goertz MP; Jebrail FF J Microw Power Electromagn Energy; 2013; 47(3):210-23. PubMed ID: 24779141 [TBL] [Abstract][Full Text] [Related]
24. A three-dimensional renormalization group bubble merger model for Rayleigh-Taylor mixing. Cheng B; Glimm J; Sharp DH Chaos; 2002 Jun; 12(2):267-274. PubMed ID: 12779554 [TBL] [Abstract][Full Text] [Related]
25. Asymptotic behavior of the Rayleigh-Taylor instability. Duchemin L; Josserand C; Clavin P Phys Rev Lett; 2005 Jun; 94(22):224501. PubMed ID: 16090402 [TBL] [Abstract][Full Text] [Related]
26. Simulation and Reynolds-averaged Navier-Stokes modeling of a three-component Rayleigh-Taylor mixing problem with thermonuclear burn. Morgan BE Phys Rev E; 2022 Apr; 105(4-2):045104. PubMed ID: 35590584 [TBL] [Abstract][Full Text] [Related]
27. What is certain and what is not so certain in our knowledge of Rayleigh-Taylor mixing? Anisimov SI; Drake RP; Gauthier S; Meshkov EE; Abarzhi SI Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20130266. PubMed ID: 24146014 [TBL] [Abstract][Full Text] [Related]
28. Growth mechanism of interfacial fluid-mixing width induced by successive nonlinear wave interactions. Li H; Tian B; He Z; Zhang Y Phys Rev E; 2021 May; 103(5-1):053109. PubMed ID: 34134196 [TBL] [Abstract][Full Text] [Related]
29. Direct numerical simulation of supercritical annular electroconvection. Tsai P; Daya ZA; Deyirmenjian VB; Morris SW Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026305. PubMed ID: 17930140 [TBL] [Abstract][Full Text] [Related]
30. Rayleigh-Taylor instabilities in reaction-diffusion systems inside Hele-Shaw cell modified by the action of temperature. García Casado G; Tofaletti L; Müller D; D'Onofrio A J Chem Phys; 2007 Mar; 126(11):114502. PubMed ID: 17381215 [TBL] [Abstract][Full Text] [Related]
31. Self-similar Rayleigh-Taylor mixing with accelerations varying in time and space. Abarzhi SI; Sreenivasan KR Proc Natl Acad Sci U S A; 2022 Nov; 119(47):e2118589119. PubMed ID: 36375067 [TBL] [Abstract][Full Text] [Related]
32. Buoyancy-Driven Flow through a Bed of Solid Particles Produces a New Form of Rayleigh-Taylor Turbulence. Sardina G; Brandt L; Boffetta G; Mazzino A Phys Rev Lett; 2018 Nov; 121(22):224501. PubMed ID: 30547608 [TBL] [Abstract][Full Text] [Related]
34. Linear analysis of incompressible Rayleigh-Taylor instability in solids. Piriz AR; Cela JJ; Tahir NA Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046305. PubMed ID: 19905434 [TBL] [Abstract][Full Text] [Related]
35. Large-eddy simulation and Reynolds-averaged Navier-Stokes modeling of three Rayleigh-Taylor mixing configurations with gravity reversal. Morgan BE Phys Rev E; 2022 Aug; 106(2-2):025101. PubMed ID: 36109949 [TBL] [Abstract][Full Text] [Related]
36. Nonlinear diffusion model for Rayleigh-Taylor mixing. Boffetta G; De Lillo F; Musacchio S Phys Rev Lett; 2010 Jan; 104(3):034505. PubMed ID: 20366649 [TBL] [Abstract][Full Text] [Related]
37. Nonlinear Rayleigh-Taylor instability of rotating inviscid fluids. Tao JJ; He XT; Ye WH; Busse FH Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013001. PubMed ID: 23410420 [TBL] [Abstract][Full Text] [Related]
38. Late-time quadratic growth in single-mode Rayleigh-Taylor instability. Wei T; Livescu D Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046405. PubMed ID: 23214698 [TBL] [Abstract][Full Text] [Related]
39. Knudsen-number dependence of two-dimensional single-mode Rayleigh-Taylor fluid instabilities. Sagert I; Howell J; Staber A; Strother T; Colbry D; Bauer W Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013009. PubMed ID: 26274271 [TBL] [Abstract][Full Text] [Related]
40. Suppression of Rayleigh-Taylor turbulence by time-periodic acceleration. Boffetta G; Magnani M; Musacchio S Phys Rev E; 2019 Mar; 99(3-1):033110. PubMed ID: 30999487 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]