These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 11854503)

  • 21. An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments.
    Liu XS; Brutlag DL; Liu JS
    Nat Biotechnol; 2002 Aug; 20(8):835-9. PubMed ID: 12101404
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long-range identification of hepatocyte nuclear factor-3 (FoxA) high and low-affinity binding sites with a chimeric nuclease.
    Ruminy P; Derambure C; Chandrasegaran S; Salier JP
    J Mol Biol; 2001 Jul; 310(3):523-35. PubMed ID: 11439020
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A structure-based approach for prediction of protein binding sites in gene upstream regions.
    Mandel-Gutfreund Y; Baron A; Margalit H
    Pac Symp Biocomput; 2001; ():139-50. PubMed ID: 11262935
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Searching for statistically significant regulatory modules.
    Bailey TL; Noble WS
    Bioinformatics; 2003 Oct; 19 Suppl 2():ii16-25. PubMed ID: 14534166
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of repressor DNA binding site architecture on transcriptional control.
    Park DM; Kiley PJ
    mBio; 2014 Aug; 5(5):e01684-14. PubMed ID: 25161193
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phylogenetic footprinting of transcription factor binding sites in proteobacterial genomes.
    McCue L; Thompson W; Carmack C; Ryan MP; Liu JS; Derbyshire V; Lawrence CE
    Nucleic Acids Res; 2001 Feb; 29(3):774-82. PubMed ID: 11160901
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comprehensive alanine scanning mutagenesis of the Escherichia coli transcriptional activator SoxS: identifying amino acids important for DNA binding and transcription activation.
    Griffith KL; Wolf RE
    J Mol Biol; 2002 Sep; 322(2):237-57. PubMed ID: 12217688
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identifying transcription factor binding sites through Markov chain optimization.
    Ellrott K; Yang C; Sladek FM; Jiang T
    Bioinformatics; 2002; 18 Suppl 2():S100-9. PubMed ID: 12385991
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Repression and activation of arginine transport genes in Escherichia coli K 12 by the ArgP protein.
    Celis RT
    J Mol Biol; 1999 Dec; 294(5):1087-95. PubMed ID: 10600368
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome.
    Robison K; McGuire AM; Church GM
    J Mol Biol; 1998 Nov; 284(2):241-54. PubMed ID: 9813115
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PhyloGibbs: a Gibbs sampling motif finder that incorporates phylogeny.
    Siddharthan R; Siggia ED; van Nimwegen E
    PLoS Comput Biol; 2005 Dec; 1(7):e67. PubMed ID: 16477324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of structural DNA properties for the prediction of transcription-factor binding sites in Escherichia coli.
    Meysman P; Dang TH; Laukens K; De Smet R; Wu Y; Marchal K; Engelen K
    Nucleic Acids Res; 2011 Jan; 39(2):e6. PubMed ID: 21051340
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SoxS, an activator of superoxide stress genes in Escherichia coli. Purification and interaction with DNA.
    Li Z; Demple B
    J Biol Chem; 1994 Jul; 269(28):18371-7. PubMed ID: 8034583
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genomic selection identifies vertebrate transcription factor Fezf2 binding sites and target genes.
    Chen L; Zheng J; Yang N; Li H; Guo S
    J Biol Chem; 2011 May; 286(21):18641-9. PubMed ID: 21471212
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-throughput SELEX SAGE method for quantitative modeling of transcription-factor binding sites.
    Roulet E; Busso S; Camargo AA; Simpson AJ; Mermod N; Bucher P
    Nat Biotechnol; 2002 Aug; 20(8):831-5. PubMed ID: 12101405
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genomic organization, chromosomal mapping and promoter analysis of the mouse selenocysteine tRNA gene transcription-activating factor (mStaf) gene.
    Adachi K; Katsuyama M; Song S; Oka T
    Biochem J; 2000 Feb; 346 Pt 1(Pt 1):45-51. PubMed ID: 10657238
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deletion analysis of the fis promoter region in Escherichia coli: antagonistic effects of integration host factor and Fis.
    Pratt TS; Steiner T; Feldman LS; Walker KA; Osuna R
    J Bacteriol; 1997 Oct; 179(20):6367-77. PubMed ID: 9335285
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comprehensive, high-resolution binding energy landscapes reveal context dependencies of transcription factor binding.
    Le DD; Shimko TC; Aditham AK; Keys AM; Longwell SA; Orenstein Y; Fordyce PM
    Proc Natl Acad Sci U S A; 2018 Apr; 115(16):E3702-E3711. PubMed ID: 29588420
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Definition of nitrite and nitrate response elements at the anaerobically inducible Escherichia coli nirB promoter: interactions between FNR and NarL.
    Tyson KL; Bell AI; Cole JA; Busby SJ
    Mol Microbiol; 1993 Jan; 7(1):151-7. PubMed ID: 8437517
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of TetD as a transcriptional activator of a subset of genes of the Escherichia coli SoxS/MarA/Rob regulon.
    Griffith KL; Becker SM; Wolf RE
    Mol Microbiol; 2005 May; 56(4):1103-17. PubMed ID: 15853893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.