These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 11854511)

  • 1. T-DNA integration into the barley genome from single and double cassette vectors.
    Stahl R; Horvath H; Van Fleet J; Voetz M; von Wettstein D; Wolf N
    Proc Natl Acad Sci U S A; 2002 Feb; 99(4):2146-51. PubMed ID: 11854511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transgene integration and organization in cotton (Gossypium hirsutum L.) genome.
    Zhang J; Cai L; Cheng J; Mao H; Fan X; Meng Z; Chan KM; Zhang H; Qi J; Ji L; Hong Y
    Transgenic Res; 2008 Apr; 17(2):293-306. PubMed ID: 17549600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of T-DNA- Xa21 loci and bacterial blight resistance effects of the transgene Xa21 in transgenic rice.
    Zhai W; Chen C; Zhu X; Chen X; Zhang D; Li X; Zhu L
    Theor Appl Genet; 2004 Aug; 109(3):534-42. PubMed ID: 15088086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transgene integration in aspen: structures of integration sites and mechanism of T-DNA integration.
    Kumar S; Fladung M
    Plant J; 2002 Aug; 31(4):543-51. PubMed ID: 12182710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of the retrotransposon BARE-1 reveals the dynamic nature of the barley genome.
    Soleimani VD; Baum BR; Johnson DA
    Genome; 2006 Apr; 49(4):389-96. PubMed ID: 16699559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular analysis of transgene and vector backbone integration into the barley genome following Agrobacterium-mediated transformation.
    Lange M; Vincze E; Møller MG; Holm PB
    Plant Cell Rep; 2006 Aug; 25(8):815-20. PubMed ID: 16528561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating Transgene Integration and Organization in Cotton (Gossypium hirsutum L.) Genome.
    Zhang J; Hong Y
    Methods Mol Biol; 2019; 1902():123-136. PubMed ID: 30543066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Arabidopsis thaliana transformants without selection reveals a high occurrence of silenced T-DNA integrations.
    Francis KE; Spiker S
    Plant J; 2005 Feb; 41(3):464-77. PubMed ID: 15659104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular characterization of transgenic shallots (Allium cepa L.) by adaptor ligation PCR (AL-PCR) and sequencing of genomic DNA flanking T-DNA borders.
    Zheng SJ; Henken B; Sofiari E; Jacobsen E; Krens FA; Kik C
    Transgenic Res; 2001 Jun; 10(3):237-45. PubMed ID: 11437280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BIBAC-GW-based vectors for generating reporter lines for site-specific genome editing in planta.
    Anggoro DT; Tark-Dame M; Walmsley A; Oka R; de Sain M; Stam M
    Plasmid; 2017 Jan; 89():27-36. PubMed ID: 28034789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Structural features of the modified BARE-retroelement in the barley (Hordeum vulgare L.) genome].
    Shcherban' AB; Vershinin AV
    Genetika; 1997 Apr; 33(4):431-6. PubMed ID: 9206660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating transgene integration and organization in cotton (Gossypium hirsutum L.) genome.
    Zhang J; Hong Y
    Methods Mol Biol; 2013; 958():95-107. PubMed ID: 23143486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Specific features of vector sequences insertion in the genome of transgenic plants].
    Permiakova NV; Deĭneko EV; Shumnyĭ VK
    Genetika; 2007 Nov; 43(11):1501-10. PubMed ID: 18186189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics.
    Sallaud C; Gay C; Larmande P; Bès M; Piffanelli P; Piégu B; Droc G; Regad F; Bourgeois E; Meynard D; Périn C; Sabau X; Ghesquière A; Glaszmann JC; Delseny M; Guiderdoni E
    Plant J; 2004 Aug; 39(3):450-64. PubMed ID: 15255873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The distribution of transgene insertion sites in barley determined by physical and genetic mapping.
    Salvo-Garrido H; Travella S; Bilham LJ; Harwood WA; Snape JW
    Genetics; 2004 Jul; 167(3):1371-9. PubMed ID: 15280249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stable gene replacement in barley by targeted double-strand break induction.
    Watanabe K; Breier U; Hensel G; Kumlehn J; Schubert I; Reiss B
    J Exp Bot; 2016 Mar; 67(5):1433-45. PubMed ID: 26712824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High frequency of single-copy T-DNA transformants produced by floral dip in CRE-expressing Arabidopsis plants.
    De Paepe A; De Buck S; Hoorelbeke K; Nolf J; Peck I; Depicker A
    Plant J; 2009 Aug; 59(4):517-27. PubMed ID: 19392707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Study of T-DNA integration loci in tobacco transgenic plants].
    Filipenko EA; Filipenko ML; Deĭneko EV; Shumnyĭ VK
    Tsitol Genet; 2007; 41(4):3-8. PubMed ID: 18030719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An affinity-based genome walking method to find transgene integration loci in transgenic genome.
    Thirulogachandar V; Pandey P; Vaishnavi CS; Reddy MK
    Anal Biochem; 2011 Sep; 416(2):196-201. PubMed ID: 21669178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [A structural analysis of the BRS1 repeat from the genomic DNA of barley (Hordeum vulgare L.)].
    Urbanovich OIu; Kartel' NA
    Tsitol Genet; 1998; 32(4):43-9. PubMed ID: 9813887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.