BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 11855936)

  • 1. Site-directed mutations in the FAD-binding domain of glycerophosphate dehydrogenase: catalytic defects with preserved mitochondrial anchoring of the enzyme in transfected COS-7 cells.
    Gudayol M; Fabregat ME; Rasschaert J; Sener A; Malaisse WJ; Gomis R
    Mol Genet Metab; 2002 Feb; 75(2):168-73. PubMed ID: 11855936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-directed mutations of the FAD-linked glycerophosphate dehydrogenase gene impairs the mitochondrial anchoring of the enzyme in transfected COS-7 cells.
    Fabregat ME; Usac EF; Franco C; Enrich C; Malaisse WJ; Gomis R
    Biochem Biophys Res Commun; 1998 Nov; 252(1):173-7. PubMed ID: 9813165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic properties of FAD-linked glycerophosphate dehydrogenase in islets from normal and streptozotocin-induced diabetic rats.
    Rasschaert J; Malaisse WJ
    Diabetes Res; 1992; 20(1):13-20. PubMed ID: 1344998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arginine-42 and threonine-45 are required for FAD incorporation and catalytic activity in human monoamine oxidase B.
    Kirksey TJ; Kwan SW; Abell CW
    Biochemistry; 1998 Sep; 37(35):12360-6. PubMed ID: 9724550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotide sequence of cDNA fragments coding for the FAD-,glycerophosphate- and calcium-binding domains of human islet mitochondrial glycerophosphate dehydrogenase.
    Novials A; Franco C; Malaisse WJ; Gomis R
    Biochem Mol Biol Int; 1997 Sep; 42(6):1125-30. PubMed ID: 9305530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence and tissue-dependent RNA expression of mouse FAD-linked glycerol-3-phosphate dehydrogenase.
    Koza RA; Kozak UC; Brown LJ; Leiter EH; MacDonald MJ; Kozak LP
    Arch Biochem Biophys; 1996 Dec; 336(1):97-104. PubMed ID: 8951039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and functional analysis of mutations in FAD-binding domain of mitochondrial glycerophosphate dehydrogenase in caucasian patients with type 2 diabetes mellitus.
    Gudayol M; Vidal J; Usac EF; Morales A; Fabregat ME; Fernández-Checa JC; Novials A; Gomis R
    Endocrine; 2001 Oct; 16(1):39-42. PubMed ID: 11822825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a dinucleotide-binding site in monoamine oxidase B by site-directed mutagenesis.
    Kwan SW; Lewis DA; Zhou BP; Abell CW
    Arch Biochem Biophys; 1995 Jan; 316(1):385-91. PubMed ID: 7840641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dexamethasone-induced changes in FAD-glycerophosphate dehydrogenase mRNA, content and activity, and insulin release in human pancreatic islets.
    Fabregat ME; Fernandez-Alvarez J; Franco C; Malaisse WJ; Gomis R
    Diabetes Nutr Metab; 1999 Dec; 12(6):388-93. PubMed ID: 10782559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutation in the calcium-binding domain of the mitochondrial glycerophosphate dehydrogenase gene in a family of diabetic subjects.
    Novials A; Vidal J; Franco C; Ribera F; Sener A; Malaisse WJ; Gomis R
    Biochem Biophys Res Commun; 1997 Feb; 231(3):570-2. PubMed ID: 9070847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Asp1393 in catalysis, flavin reduction, NADP(H) binding, FAD thermodynamics, and regulation of the nNOS flavoprotein.
    Konas DW; Takaya N; Sharma M; Stuehr DJ
    Biochemistry; 2006 Oct; 45(41):12596-609. PubMed ID: 17029414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of alpha-glycerophosphate oxidase from Streptococcus sp.: a template for the mitochondrial alpha-glycerophosphate dehydrogenase.
    Colussi T; Parsonage D; Boles W; Matsuoka T; Mallett TC; Karplus PA; Claiborne A
    Biochemistry; 2008 Jan; 47(3):965-77. PubMed ID: 18154320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation and function of the hamster adrenal steroidogenic acute regulatory protein (StAR).
    Fleury A; Mathieu AP; Ducharme L; Hales DB; LeHoux JG
    J Steroid Biochem Mol Biol; 2004 Aug; 91(4-5):259-71. PubMed ID: 15336703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of Val-265 for flavin adenine dinucleotide (FAD) binding in pyruvate oxidase: FTIR, kinetic, and crystallographic studies on the enzyme variant V265A.
    Wille G; Ritter M; Weiss MS; König S; Mäntele W; Hübner G
    Biochemistry; 2005 Apr; 44(13):5086-94. PubMed ID: 15794646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperactive mutants of mouse D-aspartate oxidase: mutagenesis of the active site residue serine 308.
    Katane M; Hanai T; Furuchi T; Sekine M; Homma H
    Amino Acids; 2008 Jun; 35(1):75-82. PubMed ID: 18235994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure of the S127P mutant of cytochrome b5 reductase that causes methemoglobinemia shows the AMP moiety of the flavin occupying the substrate binding site.
    Bewley MC; Davis CA; Marohnic CC; Taormina D; Barber MJ
    Biochemistry; 2003 Nov; 42(45):13145-51. PubMed ID: 14609324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A flavin cofactor-binding PAS domain regulates c-di-GMP synthesis in AxDGC2 from Acetobacter xylinum.
    Qi Y; Rao F; Luo Z; Liang ZX
    Biochemistry; 2009 Nov; 48(43):10275-85. PubMed ID: 19785462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional and structural roles of critical amino acids within the"N", "P", and "A" domains of the Ca2+ ATPase (SERCA) headpiece.
    Ma H; Lewis D; Xu C; Inesi G; Toyoshima C
    Biochemistry; 2005 Jun; 44(22):8090-100. PubMed ID: 15924428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site directed mutagenesis studies of FAD-dependent glucose dehydrogenase catalytic subunit of Burkholderia cepacia.
    Yamaoka H; Yamashita Y; Ferri S; Sode K
    Biotechnol Lett; 2008 Nov; 30(11):1967-72. PubMed ID: 18581061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.