These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 11856065)

  • 1. Is base of support greater in unsteady gait?
    Krebs DE; Goldvasser D; Lockert JD; Portney LG; Gill-Body KM
    Phys Ther; 2002 Feb; 82(2):138-47. PubMed ID: 11856065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Base of support is not wider in chronic ataxic and unsteady patients.
    Seidel B; Krebs DE
    J Rehabil Med; 2002 Nov; 34(6):288-92. PubMed ID: 12440804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Head and body center of gravity control strategies: adaptations following vestibular rehabilitation.
    Patten C; Horak FB; Krebs DE
    Acta Otolaryngol; 2003 Jan; 123(1):32-40. PubMed ID: 12625570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tai Chi and vestibular rehabilitation improve vestibulopathic gait via different neuromuscular mechanisms: preliminary report.
    McGibbon CA; Krebs DE; Parker SW; Scarborough DM; Wayne PM; Wolf SL
    BMC Neurol; 2005 Feb; 5(1):3. PubMed ID: 15717934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of head- and body-velocity trajectories during locomotion among healthy and vestibulopathic subjects.
    Cavanaugh JT; Goldvasser D; McGibbon CA; Krebs DE
    J Rehabil Res Dev; 2005; 42(2):191-8. PubMed ID: 15944884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Associations Between Bipedal Stance Stability and Locomotor Stability Following a Trip in Unilateral Vestibulopathy.
    McCrum C; Eysel-Gosepath K; Epro G; Meijer K; Savelberg HH; Brüggemann GP; Karamanidis K
    J Appl Biomech; 2017 Apr; 33(2):112-117. PubMed ID: 27735223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Center of gravity dynamic stability in normal and vestibulopathic gait.
    Tucker CA; Ramirez J; Krebs DE; Riley PO
    Gait Posture; 1998 Oct; 8(2):117-123. PubMed ID: 10200402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between margin of stability and deviations in spatiotemporal gait features in healthy young adults.
    Sivakumaran S; Schinkel-Ivy A; Masani K; Mansfield A
    Hum Mov Sci; 2018 Feb; 57():366-373. PubMed ID: 28987772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The validity of the GaitRite and the Functional Ambulation Performance scoring system in the analysis of Parkinson gait.
    Nelson AJ; Zwick D; Brody S; Doran C; Pulver L; Rooz G; Sadownick M; Nelson R; Rothman J
    NeuroRehabilitation; 2002; 17(3):255-62. PubMed ID: 12237507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery from perturbations during paced walking.
    Oddsson LI; Wall C; McPartland MD; Krebs DE; Tucker CA
    Gait Posture; 2004 Feb; 19(1):24-34. PubMed ID: 14741301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional reach: does it really measure dynamic balance?
    Wernick-Robinson M; Krebs DE; Giorgetti MM
    Arch Phys Med Rehabil; 1999 Mar; 80(3):262-9. PubMed ID: 10084433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lower limb sagittal kinematic and kinetic modeling of very slow walking for gait trajectory scaling.
    Smith AJJ; Lemaire ED; Nantel J
    PLoS One; 2018; 13(9):e0203934. PubMed ID: 30222772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing Patients with Unilateral Vestibular Hypofunction Using Kinematic Variability and Local Dynamic Stability during Treadmill Walking.
    Liu P; Huang Q; Ou Y; Chen L; Song R; Zheng Y
    Behav Neurol; 2017; 2017():4820428. PubMed ID: 28785135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erratum.
    Mult Scler; 2016 Oct; 22(12):NP9-NP11. PubMed ID: 26041800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of the effects of body weight unloading on overground gait biomechanical parameters.
    Fischer AG; Wolf A
    Clin Biomech (Bristol, Avon); 2015 Jun; 30(5):454-61. PubMed ID: 25798857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of gait speed on the body's center of mass motion relative to the center of pressure during over-ground walking.
    Lu HL; Kuo MY; Chang CF; Lu TW; Hong SW
    Hum Mov Sci; 2017 Aug; 54():354-362. PubMed ID: 28688302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic margin of stability during gait is altered in persons with multiple sclerosis.
    Peebles AT; Reinholdt A; Bruetsch AP; Lynch SG; Huisinga JM
    J Biomech; 2016 Dec; 49(16):3949-3955. PubMed ID: 27889188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gait parameters associated with responsiveness to treadmill training with body-weight support after stroke: an exploratory study.
    Mulroy SJ; Klassen T; Gronley JK; Eberly VJ; Brown DA; Sullivan KJ
    Phys Ther; 2010 Feb; 90(2):209-23. PubMed ID: 20022996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of slip on movement of body center of mass relative to base of support.
    You J; Chou Y; Lin C; Su F
    Clin Biomech (Bristol, Avon); 2001 Feb; 16(2):167-73. PubMed ID: 11222936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gait characteristics of elderly people with a history of falls: a dynamic approach.
    Barak Y; Wagenaar RC; Holt KG
    Phys Ther; 2006 Nov; 86(11):1501-10. PubMed ID: 17079750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.