These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 11856314)

  • 61. Transcription factors and miRNAs that regulate fetal to adult CFTR expression change are new targets for cystic fibrosis.
    Viart V; Bergougnoux A; Bonini J; Varilh J; Chiron R; Tabary O; Molinari N; Claustres M; Taulan-Cadars M
    Eur Respir J; 2015 Jan; 45(1):116-28. PubMed ID: 25186262
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Correlation between DNase I hypersensitive site distribution and gene expression in HeLa S3 cells.
    Wang YM; Zhou P; Wang LY; Li ZH; Zhang YN; Zhang YX
    PLoS One; 2012; 7(8):e42414. PubMed ID: 22900019
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Insertion of natural intron 6a-6b into a human cDNA-derived gene therapy vector for cystic fibrosis improves plasmid stability and permits facile RNA/DNA discrimination.
    Boyd AC; Popp F; Michaelis U; Davidson H; Davidson-Smith H; Doherty A; McLachlan G; Porteous DJ; Seeber S
    J Gene Med; 1999; 1(5):312-21. PubMed ID: 10738548
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Proliferation of Regulatory DNA Elements Derived from Transposable Elements in the Maize Genome.
    Zhao H; Zhang W; Chen L; Wang L; Marand AP; Wu Y; Jiang J
    Plant Physiol; 2018 Apr; 176(4):2789-2803. PubMed ID: 29463772
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Defective regulation of gap junctional coupling in cystic fibrosis pancreatic duct cells.
    Chanson M; Scerri I; Suter S
    J Clin Invest; 1999 Jun; 103(12):1677-84. PubMed ID: 10377174
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Disrupted post-transcriptional regulation of the cystic fibrosis transmembrane conductance regulator (CFTR) by a 5'UTR mutation is associated with a CFTR-related disease.
    Lukowski SW; Bombieri C; Trezise AE
    Hum Mutat; 2011 Oct; 32(10):E2266-82. PubMed ID: 21837768
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Identification of a new cis-regulatory element of the terminal deoxynucleotidyl transferase gene in the 5' region of the murine locus.
    Cherrier M; D'Andon MF; Rougeon F; Doyen N
    Mol Immunol; 2008 Feb; 45(4):1009-17. PubMed ID: 17854898
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Pharmacogenomics of the cystic fibrosis transmembrane conductance regulator (CFTR) and the cystic fibrosis drug CPX using genome microarray analysis.
    Srivastava M; Eidelman O; Pollard HB
    Mol Med; 1999 Nov; 5(11):753-67. PubMed ID: 10656877
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Causes and consequences of chromatin variation between inbred mice.
    Hosseini M; Goodstadt L; Hughes JR; Kowalczyk MS; de Gobbi M; Otto GW; Copley RR; Mott R; Higgs DR; Flint J
    PLoS Genet; 2013 Jun; 9(6):e1003570. PubMed ID: 23785304
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Prediction of DNase I hypersensitive sites by using pseudo nucleotide compositions.
    Feng P; Jiang N; Liu N
    ScientificWorldJournal; 2014; 2014():740506. PubMed ID: 25215331
    [TBL] [Abstract][Full Text] [Related]  

  • 71. iDHS-Deep: an integrated tool for predicting DNase I hypersensitive sites by deep neural network.
    Dao FY; Lv H; Su W; Sun ZJ; Huang QL; Lin H
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33751027
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Rapid and unambiguous detection of DNase I hypersensitive site in rare population of cells.
    Zeng WP; McFarland MM
    PLoS One; 2014; 9(1):e85740. PubMed ID: 24465674
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Gammaretroviral vector integration occurs overwhelmingly within and near DNase hypersensitive sites.
    Liu M; Li CL; Stamatoyannopoulos G; Dorschner MO; Humbert R; Stamatoyannopoulos JA; Emery DW
    Hum Gene Ther; 2012 Feb; 23(2):231-7. PubMed ID: 21981728
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Systematic analyses of regulatory variants in DNase I hypersensitive sites identified two novel lung cancer susceptibility loci.
    Dai J; Li Z; Amos CI; Hung RJ; Tardon A; Andrew AS; Chen C; Christiani DC; Albanes D; van der Heijden EHFM; Duell EJ; Rennert G; Mckay JD; Yuan JM; Field JK; Manjer J; Grankvist K; Le Marchand L; Teare MD; Schabath MB; Aldrich MC; Tsao MS; Lazarus P; Lam S; Bojesen SE; Arnold S; Wu X; Haugen A; Janout V; Johansson M; Brhane Y; Fernandez-Somoano A; Kiemeney LA; Davies MPA; Zienolddiny S; Hu Z; Shen H
    Carcinogenesis; 2019 May; 40(3):432-440. PubMed ID: 30590402
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Cross-talk between enhancers, structural elements and activating transcription factors maintains the 3D architecture and expression of the CFTR gene.
    Yin S; NandyMazumdar M; Paranjapye A; Harris A
    Genomics; 2022 May; 114(3):110350. PubMed ID: 35346781
    [TBL] [Abstract][Full Text] [Related]  

  • 76. iDHS-DSAMS: Identifying DNase I hypersensitive sites based on the dinucleotide property matrix and ensemble bagged tree.
    Zhang S; Yu Q; He H; Zhu F; Wu P; Gu L; Jiang S
    Genomics; 2020 Mar; 112(2):1282-1289. PubMed ID: 31377426
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A complex network of regulatory elements in Ikaros and their activity during hemo-lymphopoiesis.
    Kaufmann C; Yoshida T; Perotti EA; Landhuis E; Wu P; Georgopoulos K
    EMBO J; 2003 May; 22(9):2211-23. PubMed ID: 12727887
    [TBL] [Abstract][Full Text] [Related]  

  • 78. An intronic silencer of the mouse perforin gene.
    Youn BS; Lim CL; Shin MK; Hill JM; Kwon BS
    Mol Cells; 2002 Feb; 13(1):61-8. PubMed ID: 11911476
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Identifying DNase I hypersensitive sites as driver distal regulatory elements in breast cancer.
    D Antonio M; Weghorn D; D Antonio-Chronowska A; Coulet F; Olson KM; DeBoever C; Drees F; Arias A; Alakus H; Richardson AL; Schwab RB; Farley EK; Sunyaev SR; Frazer KA
    Nat Commun; 2017 Sep; 8(1):436. PubMed ID: 28874753
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Micro-RNA-like effects of complete intronic sequences.
    Hill AE; Hong JS; Wen H; Teng L; McPherson DT; McPherson SA; Levasseur DN; Sorscher EJ
    Front Biosci; 2006 May; 11():1998-2006. PubMed ID: 16368574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.