These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 11856355)

  • 1. Structural and functional characterization of a C-type lectin-like antifreeze protein from rainbow smelt (Osmerus mordax).
    Achenbach JC; Ewart KV
    Eur J Biochem; 2002 Feb; 269(4):1219-26. PubMed ID: 11856355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca2+-dependent antifreeze proteins. Modulation of conformation and activity by divalent metal ions.
    Ewart KV; Yang DS; Ananthanarayanan VS; Fletcher GL; Hew CL
    J Biol Chem; 1996 Jul; 271(28):16627-32. PubMed ID: 8663288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ice-binding site of Atlantic herring antifreeze protein corresponds to the carbohydrate-binding site of C-type lectins.
    Ewart KV; Li Z; Yang DS; Fletcher GL; Hew CL
    Biochemistry; 1998 Mar; 37(12):4080-5. PubMed ID: 9521729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of glycerol production by rainbow smelt (Osmerus mordax) to provide freeze resistance and allow foraging at low winter temperatures.
    Driedzic WR; Ewart KV
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Nov; 139(3):347-57. PubMed ID: 15544960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ice-binding site of sea raven antifreeze protein is distinct from the carbohydrate-binding site of the homologous C-type lectin.
    Loewen MC; Gronwald W; Sönnichsen FD; Sykes BD; Davies PL
    Biochemistry; 1998 Dec; 37(51):17745-53. PubMed ID: 9922140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freeze resistance in rainbow smelt (Osmerus mordax): seasonal pattern of glycerol and antifreeze protein levels and liver enzyme activity associated with glycerol production.
    Lewis JM; Ewart KV; Driedzic WR
    Physiol Biochem Zool; 2004; 77(3):415-22. PubMed ID: 15286915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional similarity between fish antifreeze proteins and calcium-dependent lectins.
    Ewart KV; Rubinsky B; Fletcher GL
    Biochem Biophys Res Commun; 1992 May; 185(1):335-40. PubMed ID: 1599470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonal freeze resistance of rainbow smelt (Osmerus mordax) is generated by differential expression of glycerol-3-phosphate dehydrogenase, phosphoenolpyruvate carboxykinase, and antifreeze protein genes.
    Liebscher RS; Richards RC; Lewis JM; Short CE; Muise DM; Driedzic WR; Ewart KV
    Physiol Biochem Zool; 2006; 79(2):411-23. PubMed ID: 16555199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smelt was the likely beneficiary of an antifreeze gene laterally transferred between fishes.
    Graham LA; Li J; Davidson WS; Davies PL
    BMC Evol Biol; 2012 Sep; 12():190. PubMed ID: 23009612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Herring antifreeze protein: primary structure and evidence for a C-type lectin evolutionary origin.
    Ewart KV; Fletcher GL
    Mol Mar Biol Biotechnol; 1993 Feb; 2(1):20-7. PubMed ID: 8364686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osmotic pressure-adaptive responses in the eye tissues of rainbow smelt (Osmerus mordax).
    Gendron RL; Armstrong E; Paradis H; Haines L; Desjardins M; Short CE; Clow KA; Driedzic WR
    Mol Vis; 2011; 17():2596-604. PubMed ID: 22025894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Type II antifreeze protein from a mid-latitude freshwater fish, Japanese smelt (Hypomesus nipponensis).
    Yamashita Y; Miura R; Takemoto Y; Tsuda S; Kawahara H; Obata H
    Biosci Biotechnol Biochem; 2003 Mar; 67(3):461-6. PubMed ID: 12723591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative modeling of the three-dimensional structure of type II antifreeze protein.
    Sönnichsen FD; Sykes BD; Davies PL
    Protein Sci; 1995 Mar; 4(3):460-71. PubMed ID: 7540906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Ca2+-dependent bacterial antifreeze protein domain has a novel beta-helical ice-binding fold.
    Garnham CP; Gilbert JA; Hartman CP; Campbell RL; Laybourn-Parry J; Davies PL
    Biochem J; 2008 Apr; 411(1):171-80. PubMed ID: 18095937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lateral transfer of a lectin-like antifreeze protein gene in fishes.
    Graham LA; Lougheed SC; Ewart KV; Davies PL
    PLoS One; 2008 Jul; 3(7):e2616. PubMed ID: 18612417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperactive antifreeze protein from fish contains multiple ice-binding sites.
    Graham LA; Marshall CB; Lin FH; Campbell RL; Davies PL
    Biochemistry; 2008 Feb; 47(7):2051-63. PubMed ID: 18225917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. When are antifreeze proteins in solution essential for ice growth inhibition?
    Drori R; Davies PL; Braslavsky I
    Langmuir; 2015 Jun; 31(21):5805-11. PubMed ID: 25946514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The freeze-avoidance response of smelt Osmerus mordax: initiation and subsequent suppression of glycerol, trimethylamine oxide and urea accumulation.
    Treberg JR; Wilson CE; Richards RC; Ewart KV; Driedzic WR
    J Exp Biol; 2002 May; 205(Pt 10):1419-27. PubMed ID: 11976353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity.
    Marshall CB; Tomczak MM; Gauthier SY; Kuiper MJ; Lankin C; Walker VK; Davies PL
    Biochemistry; 2004 Jan; 43(1):148-54. PubMed ID: 14705940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ordered surface carbons distinguish antifreeze proteins and their ice-binding regions.
    Doxey AC; Yaish MW; Griffith M; McConkey BJ
    Nat Biotechnol; 2006 Jul; 24(7):852-5. PubMed ID: 16823370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.