These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 11856355)

  • 41. Characterization of an antifreeze protein from the polar diatom Fragilariopsis cylindrus and its relevance in sea ice.
    Bayer-Giraldi M; Weikusat I; Besir H; Dieckmann G
    Cryobiology; 2011 Dec; 63(3):210-9. PubMed ID: 21906587
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Peptide backbone circularization enhances antifreeze protein thermostability.
    Stevens CA; Semrau J; Chiriac D; Litschko M; Campbell RL; Langelaan DN; Smith SP; Davies PL; Allingham JS
    Protein Sci; 2017 Oct; 26(10):1932-1941. PubMed ID: 28691252
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hypothermic protection--a fundamental property of "antifreeze" proteins.
    Rubinsky B; Arav A; Fletcher GL
    Biochem Biophys Res Commun; 1991 Oct; 180(2):566-71. PubMed ID: 1953726
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of type III antifreeze protein dilution and mutation on the growth inhibition of ice.
    DeLuca CI; Chao H; Sönnichsen FD; Sykes BD; Davies PL
    Biophys J; 1996 Nov; 71(5):2346-55. PubMed ID: 8913575
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biochemistry of fish antifreeze proteins.
    Davies PL; Hew CL
    FASEB J; 1990 May; 4(8):2460-8. PubMed ID: 2185972
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Kinetics of antifreeze protein-induced ice growth inhibition.
    Chapsky L; Rubinsky B
    FEBS Lett; 1997 Jul; 412(1):241-4. PubMed ID: 9257728
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cooperative function of ammonium polyacrylate with antifreeze protein type I.
    Funakoshi K; Inada T; Kawabata H; Tomita T
    Biomacromolecules; 2008 Nov; 9(11):3150-6. PubMed ID: 18847239
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nonequilibrium antifreeze peptides and the recrystallization of ice.
    Knight CA; Wen D; Laursen RA
    Cryobiology; 1995 Feb; 32(1):23-34. PubMed ID: 7697996
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular analysis, tissue profiles, and seasonal patterns of cytosolic and mitochondrial GPDH in freeze-resistant rainbow smelt (Osmerus mordax).
    Robinson JL; Hall JR; Charman M; Ewart KV; Driedzic WR
    Physiol Biochem Zool; 2011; 84(4):363-76. PubMed ID: 21743250
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences.
    Hanada Y; Nishimiya Y; Miura A; Tsuda S; Kondo H
    FEBS J; 2014 Aug; 281(16):3576-90. PubMed ID: 24938370
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Expression analysis of glycerol synthesis-related liver transcripts in rainbow smelt (Osmerus mordax) exposed to a controlled decrease in temperature.
    Hall JR; Short CE; Rise ML; Driedzic WR
    Physiol Biochem Zool; 2012; 85(1):74-84. PubMed ID: 22237291
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural basis for the binding of a globular antifreeze protein to ice.
    Jia Z; DeLuca CI; Chao H; Davies PL
    Nature; 1996 Nov; 384(6606):285-8. PubMed ID: 8918883
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Calcium-Binding Generates the Semi-Clathrate Waters on a Type II Antifreeze Protein to Adsorb onto an Ice Crystal Surface.
    Arai T; Nishimiya Y; Ohyama Y; Kondo H; Tsuda S
    Biomolecules; 2019 Apr; 9(5):. PubMed ID: 31035615
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structures and ice-binding faces of the alanine-rich type I antifreeze proteins.
    Patel SN; Graether SP
    Biochem Cell Biol; 2010 Apr; 88(2):223-9. PubMed ID: 20453925
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multivalent Display of Antifreeze Proteins by Fusion to Self-Assembling Protein Cages Enhances Ice-Binding Activities.
    Phippen SW; Stevens CA; Vance TD; King NP; Baker D; Davies PL
    Biochemistry; 2016 Dec; 55(49):6811-6820. PubMed ID: 27951652
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Beta-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect.
    Graether SP; Kuiper MJ; Gagné SM; Walker VK; Jia Z; Sykes BD; Davies PL
    Nature; 2000 Jul; 406(6793):325-8. PubMed ID: 10917537
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Antifreeze peptide heterogeneity in an antarctic eel pout includes an unusually large major variant comprised of two 7 kDa type III AFPs linked in tandem.
    Wang X; DeVries AL; Cheng CH
    Biochim Biophys Acta; 1995 Mar; 1247(2):163-72. PubMed ID: 7696304
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular structure of a hyperactive antifreeze protein adsorbed to ice.
    Meister K; Moll CJ; Chakraborty S; Jana B; DeVries AL; Ramløv H; Bakker HJ
    J Chem Phys; 2019 Apr; 150(13):131101. PubMed ID: 30954062
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structure and application of antifreeze proteins from Antarctic bacteria.
    Muñoz PA; Márquez SL; González-Nilo FD; Márquez-Miranda V; Blamey JM
    Microb Cell Fact; 2017 Aug; 16(1):138. PubMed ID: 28784139
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Perturbation of bacterial ice nucleation activity by a grass antifreeze protein.
    Tomalty HE; Walker VK
    Biochem Biophys Res Commun; 2014 Sep; 452(3):636-41. PubMed ID: 25193694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.