These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 11856367)
1. Short peptides are not reliable models of thermodynamic and kinetic properties of the N-terminal metal binding site in serum albumin. Sokolowska M; Krezel A; Dyba M; Szewczuk Z; Bal W Eur J Biochem; 2002 Feb; 269(4):1323-31. PubMed ID: 11856367 [TBL] [Abstract][Full Text] [Related]
2. Multi-metal binding site of serum albumin. Bal W; Christodoulou J; Sadler PJ; Tucker A J Inorg Biochem; 1998 Apr; 70(1):33-9. PubMed ID: 9661286 [TBL] [Abstract][Full Text] [Related]
3. Nickel(II) transport in human blood serum. Studies of nickel(II) binding to human albumin and to native-sequence peptide, and ternary-complex formation with L-histidine. Glennon JD; Sarkar B Biochem J; 1982 Apr; 203(1):15-23. PubMed ID: 7103934 [TBL] [Abstract][Full Text] [Related]
4. Thermodynamic and spectroscopic study of Cu(II) and Ni(II) binding to bovine serum albumin. Zhang Y; Wilcox DE J Biol Inorg Chem; 2002 Mar; 7(3):327-37. PubMed ID: 11935357 [TBL] [Abstract][Full Text] [Related]
5. Studies of copper(II) binding to glycylglycyl-L-tyrosine-N-methyl amide, a peptide mimicking the NH2-terminal copper(II)-binding site of dog serum albumin by analytical potentiometry, spectrophotometry, CD, and NMR spectroscopy. Muller D; Decock-Le Révérend B; Sarkar B J Inorg Biochem; 1984 Jul; 21(3):215-26. PubMed ID: 6470702 [TBL] [Abstract][Full Text] [Related]
6. Specific nickel(II)-transfer process between the native sequence peptide representing the nickel(II)-transport site of human serum albumin and L-histidine. Tabata M; Sarkar B J Inorg Biochem; 1992 Feb; 45(2):93-104. PubMed ID: 1624937 [TBL] [Abstract][Full Text] [Related]
7. Investigation on the interaction of Rutin with serum albumins: Insights from spectroscopic and molecular docking techniques. Sengupta P; Sardar PS; Roy P; Dasgupta S; Bose A J Photochem Photobiol B; 2018 Jun; 183():101-110. PubMed ID: 29702339 [TBL] [Abstract][Full Text] [Related]
8. Nickel(II)-Schiff base complex recognizing domain II of bovine and human serum albumin: spectroscopic and docking studies. Ray A; Seth BK; Pal U; Basu S Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jun; 92():164-74. PubMed ID: 22446763 [TBL] [Abstract][Full Text] [Related]
9. Isothermal titration calorimetry measurements of Ni(II) and Cu(II) binding to His, GlyGlyHis, HisGlyHis, and bovine serum albumin: a critical evaluation. Zhang Y; Akilesh S; Wilcox DE Inorg Chem; 2000 Jul; 39(14):3057-64. PubMed ID: 11196901 [TBL] [Abstract][Full Text] [Related]
10. Interaction of triprolidine hydrochloride with serum albumins: thermodynamic and binding characteristics, and influence of site probes. Sandhya B; Hegde AH; Kalanur SS; Katrahalli U; Seetharamappa J J Pharm Biomed Anal; 2011 Apr; 54(5):1180-6. PubMed ID: 21215548 [TBL] [Abstract][Full Text] [Related]
11. Spectroscopic studies on the interaction between tetrandrine and two serum albumins by chemometrics methods. Cheng Z; Liu R; Jiang X Spectrochim Acta A Mol Biomol Spectrosc; 2013 Nov; 115():92-105. PubMed ID: 23831983 [TBL] [Abstract][Full Text] [Related]
12. Involvement of a lysine residue in the N-terminal Ni2+ and Cu2+ binding site of serum albumins. Comparison with Co2+, Cd2+ and Al3+. Sadler PJ; Tucker A; Viles JH Eur J Biochem; 1994 Feb; 220(1):193-200. PubMed ID: 8119287 [TBL] [Abstract][Full Text] [Related]
13. Interaction of tetramethylpyrazine with two serum albumins by a hybrid spectroscopic method. Cheng Z Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jul; 93():321-30. PubMed ID: 22484270 [TBL] [Abstract][Full Text] [Related]
14. Identification differential behavior of Gd@C Liu X; Ying X; Li Y; Yang H; Hao W; Yu M Spectrochim Acta A Mol Biomol Spectrosc; 2018 Oct; 203():383-396. PubMed ID: 29894950 [TBL] [Abstract][Full Text] [Related]
15. The subsequent effect of interaction between Co(2+) and human serum albumin or bovine serum albumin. Liang H; Huang J; Tu CQ; Zhang M; Zhou YQ; Shen PW J Inorg Biochem; 2001 Jun; 85(2-3):167-71. PubMed ID: 11410236 [TBL] [Abstract][Full Text] [Related]
16. X-band electron paramagnetic resonance spectra of bovine serum albumin-copper(II) and bovine serum albumin-copper(II)-aminoacid systems. Pandeya KB; Patel RN Indian J Biochem Biophys; 1992 Jun; 29(3):245-50. PubMed ID: 1324882 [TBL] [Abstract][Full Text] [Related]
17. Probing the interaction of a new synthesized CdTe quantum dots with human serum albumin and bovine serum albumin by spectroscopic methods. Bardajee GR; Hooshyar Z Mater Sci Eng C Mater Biol Appl; 2016 May; 62():806-15. PubMed ID: 26952487 [TBL] [Abstract][Full Text] [Related]
18. New advances in the study on the interaction of [Cr(phen)2(dppz)]3+ complex with biological models; association to transporting proteins. Toneatto J; Argüello GA J Inorg Biochem; 2011 May; 105(5):645-51. PubMed ID: 21450267 [TBL] [Abstract][Full Text] [Related]
19. Further characterization of the N-terminal copper(II)- and nickel(II)-binding motif of proteins. Studies of metal binding to chicken serum albumin and the native sequence peptide. Predki PF; Harford C; Brar P; Sarkar B Biochem J; 1992 Oct; 287 ( Pt 1)(Pt 1):211-5. PubMed ID: 1417775 [TBL] [Abstract][Full Text] [Related]
20. The non-specificity of dog serum albumin and the N-terminal model peptide glycylglycyl-L-tyrosine N-methylamide for nickel is due to the lack of histidine in the third position. Glennon JD; Sarkar B Biochem J; 1982 Apr; 203(1):25-31. PubMed ID: 7103937 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]