These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 11856383)

  • 1. Optical far-field microscopy of single molecules with 3.4 nm lateral resolution.
    Bloess A; Durand Y; Matsushita M; van Dermeer H; Brakenhoff GJ; Schmidt J
    J Microsc; 2002 Jan; 205(Pt 1):76-85. PubMed ID: 11856383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryogenic Far-Field Fluorescence Nanoscopy: Evaluation with DNA Origami.
    Furubayashi T; Ishida K; Nakata E; Morii T; Naruse K; Matsushita M; Fujiyoshi S
    J Phys Chem B; 2020 Sep; 124(35):7525-7536. PubMed ID: 32790384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-stable super-resolution fluorescence cryo-microscopy for correlative light and electron cryo-microscopy.
    Xu X; Xue Y; Tian B; Feng F; Gu L; Li W; Ji W; Xu T
    Sci China Life Sci; 2018 Nov; 61(11):1312-1319. PubMed ID: 30426455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virtual k-Space Modulation Optical Microscopy.
    Kuang C; Ma Y; Zhou R; Zheng G; Fang Y; Xu Y; Liu X; So PT
    Phys Rev Lett; 2016 Jul; 117(2):028102. PubMed ID: 27447529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ single-molecule imaging with attoliter detection using objective total internal reflection confocal microscopy.
    Burghardt TP; Ajtai K; Borejdo J
    Biochemistry; 2006 Apr; 45(13):4058-68. PubMed ID: 16566579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sample drift correction in 3D fluorescence photoactivation localization microscopy.
    Mlodzianoski MJ; Schreiner JM; Callahan SP; Smolková K; Dlasková A; Santorová J; Ježek P; Bewersdorf J
    Opt Express; 2011 Aug; 19(16):15009-19. PubMed ID: 21934862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sub-nanometer drift correction for super-resolution imaging.
    Tang Y; Wang X; Zhang X; Li J; Dai L
    Opt Lett; 2014 Oct; 39(19):5685-8. PubMed ID: 25360959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional standing wave total internal reflection fluorescence microscopy: superresolution imaging of single molecular and biological specimens.
    Chung E; Kim D; Cui Y; Kim YH; So PT
    Biophys J; 2007 Sep; 93(5):1747-57. PubMed ID: 17483188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanometer Accuracy in Cryogenic Far-Field Localization Microscopy of Individual Molecules.
    Furubayashi T; Ishida K; Kashida H; Nakata E; Morii T; Matsushita M; Fujiyoshi S
    J Phys Chem Lett; 2019 Oct; 10(19):5841-5846. PubMed ID: 31525978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High spatial resolution confocal microscope with independent excitation and detection scanning capabilities.
    Marcet S; Ouellet-Plamondon C; Francoeur S
    Rev Sci Instrum; 2009 Jun; 80(6):063101. PubMed ID: 19566190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization microscopy: mapping cellular dynamics with single molecules.
    Nelson AJ; Hess ST
    J Microsc; 2014 Apr; 254(1):1-8. PubMed ID: 24611627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastable measurement platform: sub-nm drift over hours in 3D at room temperature.
    Walder R; Paik DH; Bull MS; Sauer C; Perkins TT
    Opt Express; 2015 Jun; 23(13):16554-64. PubMed ID: 26191667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging and tracking of single GFP molecules in solution.
    Kubitscheck U; Kückmann O; Kues T; Peters R
    Biophys J; 2000 Apr; 78(4):2170-9. PubMed ID: 10733995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drift correction for single-molecule imaging by molecular constraint field, a distance minimum metric.
    Han R; Wang L; Xu F; Zhang Y; Zhang M; Liu Z; Ren F; Zhang F
    BMC Biophys; 2015; 8(1):1. PubMed ID: 25649266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single molecule mapping of the optical field distribution of probes for near-field microscopy.
    Veerman JA; Garcia-Parajo MF; Kuipers L; van Hulst NF
    J Microsc; 1999; 194(Pt 2-3):477-82. PubMed ID: 11388289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanosizing by spatially modulated illumination (SMI) microscopy and applications to the nucleus.
    Birk UJ; Baddeley D; Cremer C
    Methods Mol Biol; 2009; 464():389-401. PubMed ID: 18951196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous, accurate measurement of the 3D position and orientation of single molecules.
    Backlund MP; Lew MD; Backer AS; Sahl SJ; Grover G; Agrawal A; Piestun R; Moerner WE
    Proc Natl Acad Sci U S A; 2012 Nov; 109(47):19087-92. PubMed ID: 23129640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated instrumental setup for the combination of atomic force microscopy with optical spectroscopy.
    Owen RJ; Heyes CD; Knebel D; Röcker C; Nienhaus GU
    Biopolymers; 2006 Jul; 82(4):410-4. PubMed ID: 16302196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10-nm range.
    Lemmer P; Gunkel M; Weiland Y; Müller P; Baddeley D; Kaufmann R; Urich A; Eipel H; Amberger R; Hausmann M; Cremer C
    J Microsc; 2009 Aug; 235(2):163-71. PubMed ID: 19659910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectrally Resolved and Functional Super-resolution Microscopy via Ultrahigh-Throughput Single-Molecule Spectroscopy.
    Yan R; Moon S; Kenny SJ; Xu K
    Acc Chem Res; 2018 Mar; 51(3):697-705. PubMed ID: 29443498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.