BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 11856877)

  • 21. Next Generation Semiconductor Based Sequencing of the Donkey (Equus asinus) Genome Provided Comparative Sequence Data against the Horse Genome and a Few Millions of Single Nucleotide Polymorphisms.
    Bertolini F; Scimone C; Geraci C; Schiavo G; Utzeri VJ; Chiofalo V; Fontanesi L
    PLoS One; 2015; 10(7):e0131925. PubMed ID: 26151450
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chromosomal distribution of the telomere sequence (TTAGGG)(n) in the Equidae.
    Lear TL
    Cytogenet Cell Genet; 2001; 93(1-2):127-30. PubMed ID: 11474195
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cytogenetic localization of 136 genes in the horse: comparative mapping with the human genome.
    Milenkovic D; Oustry-Vaiman A; Lear TL; Billault A; Mariat D; Piumi F; Schibler L; Cribiu E; Guérin G
    Mamm Genome; 2002 Sep; 13(9):524-34. PubMed ID: 12370783
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Studies on karyotype evolution in higher primates in relation to human chromosome 14 and 9 by comparative mapping of immunoglobulin C epsilon genes with fluorescence in situ hybridization.
    Tanabe H
    Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 1999; (117):77-90. PubMed ID: 10859938
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation, characterization and FISH assignments of horse BAC clones containing type I and II markers.
    Mariat D; Oustry-Vaiman A; Cribiu EP; Raudsepp T; Chowdhary BP; Guérin G
    Cytogenet Cell Genet; 2001; 92(1-2):144-8. PubMed ID: 11306814
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluorescent in situ hybridization mapping of the epidermal growth factor receptor gene in donkey.
    Bugno M; Klukowka-Rötzler J; Słota E; Witarski W; Gerber V; Leeb T
    J Anim Breed Genet; 2007 Jun; 124(3):172-4. PubMed ID: 17550360
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-resolution gene maps of horse chromosomes 14 and 21: additional insights into evolution and rearrangements of HSA5 homologs in mammals.
    Goh G; Raudsepp T; Durkin K; Wagner ML; Schäffer AA; Agarwala R; Tozaki T; Mickelson JR; Chowdhary BP
    Genomics; 2007 Jan; 89(1):89-112. PubMed ID: 16916595
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cytogenetic Mapping of Cattle BAC Probes for the Hypothetical Ancestral Karyotype of the Family Cervidae.
    Bernegossi AM; Vozdova M; Cernohorska H; Kubickova S; Galindo DJ; Kadlcikova D; Rubes J; Duarte JMB
    Cytogenet Genome Res; 2022; 162(3):140-147. PubMed ID: 35981520
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Paracentric Inversions Differentiate the Conservative Karyotypes in Two Centropomus Species (Teleostei: Centropomidae).
    Borges AT; Cioffi MB; Bertollo LAC; Soares RX; Costa GWWF; Molina WF
    Cytogenet Genome Res; 2019; 157(4):239-248. PubMed ID: 30991393
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cross-species chromosome painting in the Perissodactyla: delimitation of homologous regions in Burchell's zebra (Equus Burchellii) and the white (Ceratotherium Simum) and black rhinoceros (Diceros Bicornis).
    Trifonov V; Yang F; Ferguson-Smith MA; Robinson TJ
    Cytogenet Genome Res; 2003; 103(1-2):104-10. PubMed ID: 15004472
    [TBL] [Abstract][Full Text] [Related]  

  • 31. FISH mapping of six genes responsible for development of the nervous and skeletal systems on donkey (Equus asinus) chromosomes.
    Bugno-Poniewierska M; Pawlina K; Dardzińska A; Zabek T; Słota E; Klukowka-Rötzler J
    Hereditas; 2010 Jun; 147(3):132-5. PubMed ID: 20626768
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chromosomal assignment of R-spondin genes in the donkey (Equus asinus, 2n = 62).
    De Lorenzi L; Genualdo V; Perucatti A; Pia Di Meo G; Molteni L; Iannuzzi L; Parma P
    J Appl Genet; 2010; 51(3):319-21. PubMed ID: 20720306
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid evolution of horse satellite DNA.
    Wijers ER; Zijlstra C; Lenstra JA
    Genomics; 1993 Oct; 18(1):113-7. PubMed ID: 8276394
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cloning and analysis of the cDNA encoding the horse and donkey luteinizing hormone beta-subunits.
    Chopineau M; Stewart F; Allen WR
    Gene; 1995 Jul; 160(2):253-6. PubMed ID: 7642105
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pooling strategy and chromosome painting characterize a living zebroid for the first time.
    Iannuzzi A; Pereira J; Iannuzzi C; Fu B; Ferguson-Smith M
    PLoS One; 2017; 12(7):e0180158. PubMed ID: 28700625
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Localization by FISH of the 31 Texas nomenclature type I markers to both Q- and R-banded bovine chromosomes.
    Hayes H; Di Meo GP; Gautier M; Laurent P; Eggen A; Iannuzzi L
    Cytogenet Cell Genet; 2000; 90(3-4):315-20. PubMed ID: 11124540
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative mapping of cattle chromosome 19: cytogenetic localization of 19 BAC clones.
    Larkin DM; Astakhova NM; Prokhorovich MA; Lewin HA; Zhdanova NS
    Cytogenet Genome Res; 2006; 112(3-4):235-40. PubMed ID: 16484778
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromosome painting with human chromosome-specific DNA libraries reveals the extent and distribution of conserved segments in bovine chromosomes.
    Hayes H
    Cytogenet Cell Genet; 1995; 71(2):168-74. PubMed ID: 7656590
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative chromosome painting defines the high rate of karyotype changes between pigs and bovids.
    Frönicke L; Wienberg J
    Mamm Genome; 2001 Jun; 12(6):442-9. PubMed ID: 11353391
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cross-species chromosome painting corroborates microchromosome fusion during karyotype evolution of birds.
    Hansmann T; Nanda I; Volobouev V; Yang F; Schartl M; Haaf T; Schmid M
    Cytogenet Genome Res; 2009; 126(3):281-304. PubMed ID: 20068299
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.