BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 11856956)

  • 1. Noxious somatic inputs to hypothalamic-midbrain projection neurones: a comparison of the columnar organisation of somatic and visceral inputs to the periaqueductal grey in the rat.
    Parry DM; Semenenko FM; Conley RK; Lumb BM
    Exp Physiol; 2002 Mar; 87(2):117-22. PubMed ID: 11856956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C-nociceptor activation of hypothalamic neurones and the columnar organisation of their projections to the periaqueductal grey in the rat.
    Lumb BM; Parry DM; Semenenko FM; McMullan S; Simpson DA
    Exp Physiol; 2002 Mar; 87(2):123-8. PubMed ID: 11856957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visceral inputs to neurons in the anterior hypothalamus including those that project to the periaqueductal gray: a functional anatomical and electrophysiological study.
    Snowball RK; Semenenko FM; Lumb BM
    Neuroscience; 2000; 99(2):351-61. PubMed ID: 10938441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitatory projections from the anterior hypothalamus to periaqueductal gray neurons that project to the medulla: a functional anatomical study.
    Semenenko FM; Lumb BM
    Neuroscience; 1999; 94(1):163-74. PubMed ID: 10613506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation of A- versus C-nociceptive inputs into spinal-brainstem circuits.
    Parry DM; Macmillan FM; Koutsikou S; McMullan S; Lumb BM
    Neuroscience; 2008 Apr; 152(4):1076-85. PubMed ID: 18328632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Projections of anterior hypothalamic neurones to the dorsal and ventral periaqueductal grey in the rat.
    Semenenko FM; Lumb BM
    Brain Res; 1992 Jun; 582(2):237-45. PubMed ID: 1393546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses of neurones in the medullary raphe nuclei to inputs from visceral nociceptors and the ventrolateral periaqueductal grey in the rat.
    Snowball RK; Dampney RA; Lumb BM
    Exp Physiol; 1997 May; 82(3):485-500. PubMed ID: 9179568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep and superficial noxious stimulation increases Fos-like immunoreactivity in different regions of the midbrain periaqueductal grey of the rat.
    Keay KA; Bandler R
    Neurosci Lett; 1993 May; 154(1-2):23-6. PubMed ID: 8361643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inescapable and escapable pain is represented in distinct hypothalamic-midbrain circuits: specific roles for Adelta- and C-nociceptors.
    Lumb BM
    Exp Physiol; 2002 Mar; 87(2):281-6. PubMed ID: 11856975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory effects evoked from both the lateral and ventrolateral periaqueductal grey are selective for the nociceptive responses of rat dorsal horn neurones.
    Waters AJ; Lumb BM
    Brain Res; 1997 Mar; 752(1-2):239-49. PubMed ID: 9106463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical stimulation of visceral afferents activates medullary neurones projecting to the central amygdala and periaqueductal grey.
    Viltart O; Sartor DM; Verberne AJ
    Brain Res Bull; 2006 Dec; 71(1-3):51-9. PubMed ID: 17113928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substance P (NK1) and somatostatin (sst2A) receptor immunoreactivity in NTS-projecting rat dorsal horn neurones activated by nociceptive afferent input.
    Gamboa-Esteves FO; McWilliam PN; Batten TF
    J Chem Neuroanat; 2004 Jul; 27(4):251-66. PubMed ID: 15261332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Common patterns of increased and decreased fos expression in midbrain and pons evoked by noxious deep somatic and noxious visceral manipulations in the rat.
    Clement CI; Keay KA; Owler BK; Bandler R
    J Comp Neurol; 1996 Mar; 366(3):495-515. PubMed ID: 8907361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Periaqueductal gray matter projection to the parabrachial nucleus in rat.
    Krout KE; Jansen AS; Loewy AD
    J Comp Neurol; 1998 Nov; 401(4):437-54. PubMed ID: 9826272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enkephalinergic rostral hypothalamic neurones do not project to the intermediate PAG in the rat.
    Semenenko FM; Williams CJ; Lumb BM
    Neuroreport; 1994 Dec; 5(18):2613-6. PubMed ID: 7696615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laminar organization of spinal dorsal horn neurones activated by C- vs. A-heat nociceptors and their descending control from the periaqueductal grey in the rat.
    Koutsikou S; Parry DM; MacMillan FM; Lumb BM
    Eur J Neurosci; 2007 Aug; 26(4):943-52. PubMed ID: 17714188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Medial preoptic area afferents to periaqueductal gray medullo-output neurons: a combined Fos and tract tracing study.
    Rizvi TA; Murphy AZ; Ennis M; Behbehani MM; Shipley MT
    J Neurosci; 1996 Jan; 16(1):333-44. PubMed ID: 8613800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Projections from nucleus raphe obscurus to the periaqueductal grey matter in the rat.
    Semenenko FM; Lumb BM; Lovick TA; Semenenka FM
    Neurosci Lett; 1994 Mar; 170(1):9-12. PubMed ID: 7999147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurones in the midbrain periaqueductal grey send collateral projections to nucleus raphe magnus and the rostral ventrolateral medulla in the rat.
    Hudson PM; Lumb BM
    Brain Res; 1996 Sep; 733(1):138-41. PubMed ID: 8891260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subregions of the periaqueductal gray topographically innervate the rostral ventral medulla in the rat.
    Van Bockstaele EJ; Aston-Jones G; Pieribone VA; Ennis M; Shipley MT
    J Comp Neurol; 1991 Jul; 309(3):305-27. PubMed ID: 1717516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.