BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 11856974)

  • 1. Distinct central representations of inescapable and escapable pain: observations and speculation.
    Keay KA; Bandler R
    Exp Physiol; 2002 Mar; 87(2):275-9. PubMed ID: 11856974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different representations of inescapable noxious stimuli in the periaqueductal gray and upper cervical spinal cord of freely moving rats.
    Keay KA; Clement CI; Depaulis A; Bandler R
    Neurosci Lett; 2001 Nov; 313(1-2):17-20. PubMed ID: 11684329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inescapable and escapable pain is represented in distinct hypothalamic-midbrain circuits: specific roles for Adelta- and C-nociceptors.
    Lumb BM
    Exp Physiol; 2002 Mar; 87(2):281-6. PubMed ID: 11856975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noxious activation of spinal or vagal afferents evokes distinct patterns of fos-like immunoreactivity in the ventrolateral periaqueductal gray of unanaesthetised rats.
    Keay KA; Clement CI; Matar WM; Heslop DJ; Henderson LA; Bandler R
    Brain Res; 2002 Sep; 948(1-2):122-30. PubMed ID: 12383963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep and superficial noxious stimulation increases Fos-like immunoreactivity in different regions of the midbrain periaqueductal grey of the rat.
    Keay KA; Bandler R
    Neurosci Lett; 1993 May; 154(1-2):23-6. PubMed ID: 8361643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Central circuits mediating patterned autonomic activity during active vs. passive emotional coping.
    Bandler R; Keay KA; Floyd N; Price J
    Brain Res Bull; 2000 Sep; 53(1):95-104. PubMed ID: 11033213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spinal sources of noxious visceral and noxious deep somatic afferent drive onto the ventrolateral periaqueductal gray of the rat.
    Clement CI; Keay KA; Podzebenko K; Gordon BD; Bandler R
    J Comp Neurol; 2000 Sep; 425(3):323-44. PubMed ID: 10972936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel circuits mediating distinct emotional coping reactions to different types of stress.
    Keay KA; Bandler R
    Neurosci Biobehav Rev; 2001 Dec; 25(7-8):669-78. PubMed ID: 11801292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detailed organisation of the human midbrain periaqueductal grey revealed using ultra-high field magnetic resonance imaging.
    Tinoco Mendoza FA; Hughes TES; Robertson RV; Crawford LS; Meylakh N; Macey PM; Macefield VG; Keay KA; Henderson LA
    Neuroimage; 2023 Feb; 266():119828. PubMed ID: 36549431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convergence of deep somatic and visceral nociceptive information onto a discrete ventrolateral midbrain periaqueductal gray region.
    Keay KA; Clement CI; Owler B; Depaulis A; Bandler R
    Neuroscience; 1994 Aug; 61(4):727-32. PubMed ID: 7838371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Descending control of spinal nociception from the periaqueductal grey distinguishes between neurons with and without C-fibre inputs.
    Waters AJ; Lumb BM
    Pain; 2008 Jan; 134(1-2):32-40. PubMed ID: 17467173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle pain activates a direct projection from ventrolateral periaqueductal gray to rostral ventrolateral medulla in rats.
    Keay KA; Li QF; Bandler R
    Neurosci Lett; 2000 Sep; 290(3):157-60. PubMed ID: 10963887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinal afferents to functionally distinct periaqueductal gray columns in the rat: an anterograde and retrograde tracing study.
    Keay KA; Feil K; Gordon BD; Herbert H; Bandler R
    J Comp Neurol; 1997 Aug; 385(2):207-29. PubMed ID: 9268124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory effects evoked from both the lateral and ventrolateral periaqueductal grey are selective for the nociceptive responses of rat dorsal horn neurones.
    Waters AJ; Lumb BM
    Brain Res; 1997 Mar; 752(1-2):239-49. PubMed ID: 9106463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation of A- versus C-nociceptive inputs into spinal-brainstem circuits.
    Parry DM; Macmillan FM; Koutsikou S; McMullan S; Lumb BM
    Neuroscience; 2008 Apr; 152(4):1076-85. PubMed ID: 18328632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quiescence and hyporeactivity evoked by activation of cell bodies in the ventrolateral midbrain periaqueductal gray of the rat.
    Depaulis A; Keay KA; Bandler R
    Exp Brain Res; 1994; 99(1):75-83. PubMed ID: 7925798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spinal and hindbrain structures involved in visceroception and visceronociception as revealed by the expression of Fos, Jun and Krox-24 proteins.
    Lantéri-Minet M; Isnardon P; de Pommery J; Menétrey D
    Neuroscience; 1993 Aug; 55(3):737-53. PubMed ID: 8413935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fos expression in the rat brain and spinal cord evoked by noxious stimulation to low back muscle and skin.
    Ohtori S; Takahashi K; Chiba T; Takahashi Y; Yamagata M; Sameda H; Moriya H
    Spine (Phila Pa 1976); 2000 Oct; 25(19):2425-30. PubMed ID: 11013492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative comparison of inhibition of visceral and cutaneous spinal nociceptive transmission from the midbrain and medulla in the rat.
    Ness TJ; Gebhart GF
    J Neurophysiol; 1987 Oct; 58(4):850-65. PubMed ID: 2824712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segmental and laminar organization of the spinal neurons projecting to the periaqueductal gray (PAG) in the cat suggests the existence of at least five separate clusters of spino-PAG neurons.
    Mouton LJ; Holstege G
    J Comp Neurol; 2000 Dec; 428(3):389-410. PubMed ID: 11074442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.