BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 11856975)

  • 1. Inescapable and escapable pain is represented in distinct hypothalamic-midbrain circuits: specific roles for Adelta- and C-nociceptors.
    Lumb BM
    Exp Physiol; 2002 Mar; 87(2):281-6. PubMed ID: 11856975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct central representations of inescapable and escapable pain: observations and speculation.
    Keay KA; Bandler R
    Exp Physiol; 2002 Mar; 87(2):275-9. PubMed ID: 11856974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different representations of inescapable noxious stimuli in the periaqueductal gray and upper cervical spinal cord of freely moving rats.
    Keay KA; Clement CI; Depaulis A; Bandler R
    Neurosci Lett; 2001 Nov; 313(1-2):17-20. PubMed ID: 11684329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noxious somatic inputs to hypothalamic-midbrain projection neurones: a comparison of the columnar organisation of somatic and visceral inputs to the periaqueductal grey in the rat.
    Parry DM; Semenenko FM; Conley RK; Lumb BM
    Exp Physiol; 2002 Mar; 87(2):117-22. PubMed ID: 11856956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. C-nociceptor activation of hypothalamic neurones and the columnar organisation of their projections to the periaqueductal grey in the rat.
    Lumb BM; Parry DM; Semenenko FM; McMullan S; Simpson DA
    Exp Physiol; 2002 Mar; 87(2):123-8. PubMed ID: 11856957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of A- versus C-nociceptive inputs into spinal-brainstem circuits.
    Parry DM; Macmillan FM; Koutsikou S; McMullan S; Lumb BM
    Neuroscience; 2008 Apr; 152(4):1076-85. PubMed ID: 18328632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Central circuits mediating patterned autonomic activity during active vs. passive emotional coping.
    Bandler R; Keay KA; Floyd N; Price J
    Brain Res Bull; 2000 Sep; 53(1):95-104. PubMed ID: 11033213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convergence of deep somatic and visceral nociceptive information onto a discrete ventrolateral midbrain periaqueductal gray region.
    Keay KA; Clement CI; Owler B; Depaulis A; Bandler R
    Neuroscience; 1994 Aug; 61(4):727-32. PubMed ID: 7838371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypothalamic and midbrain circuitry that distinguishes between escapable and inescapable pain.
    Lumb BM
    News Physiol Sci; 2004 Feb; 19():22-6. PubMed ID: 14739399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallel circuits mediating distinct emotional coping reactions to different types of stress.
    Keay KA; Bandler R
    Neurosci Biobehav Rev; 2001 Dec; 25(7-8):669-78. PubMed ID: 11801292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep and superficial noxious stimulation increases Fos-like immunoreactivity in different regions of the midbrain periaqueductal grey of the rat.
    Keay KA; Bandler R
    Neurosci Lett; 1993 May; 154(1-2):23-6. PubMed ID: 8361643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Midbrain control of spinal nociception discriminates between responses evoked by myelinated and unmyelinated heat nociceptors in the rat.
    McMullan S; Lumb BM
    Pain; 2006 Sep; 124(1-2):59-68. PubMed ID: 16650581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinal dorsal horn neuronal responses to myelinated versus unmyelinated heat nociceptors and their modulation by activation of the periaqueductal grey in the rat.
    McMullan S; Lumb BM
    J Physiol; 2006 Oct; 576(Pt 2):547-56. PubMed ID: 16916903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Columnar organization in the midbrain periaqueductal gray: modules for emotional expression?
    Bandler R; Shipley MT
    Trends Neurosci; 1994 Sep; 17(9):379-89. PubMed ID: 7817403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visceral inputs to neurons in the anterior hypothalamus including those that project to the periaqueductal gray: a functional anatomical and electrophysiological study.
    Snowball RK; Semenenko FM; Lumb BM
    Neuroscience; 2000; 99(2):351-61. PubMed ID: 10938441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses of neurones in the medullary raphe nuclei to inputs from visceral nociceptors and the ventrolateral periaqueductal grey in the rat.
    Snowball RK; Dampney RA; Lumb BM
    Exp Physiol; 1997 May; 82(3):485-500. PubMed ID: 9179568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. "First pain" in humans: convergent and specific forebrain responses.
    Matre DA; Hernandez-Garcia L; Tran TD; Casey KL
    Mol Pain; 2010 Nov; 6():81. PubMed ID: 21083897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenotype and function of somatic primary afferent nociceptive neurones with C-, Adelta- or Aalpha/beta-fibres.
    Lawson SN
    Exp Physiol; 2002 Mar; 87(2):239-44. PubMed ID: 11856969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effects of noxious and non-noxious input on neurones according to location in ventral periaqueductal grey or dorsal raphe nucleus.
    Sanders KH; Klein CE; Mayor TE; Heym C; Handwerker HO
    Brain Res; 1980 Mar; 186(1):83-97. PubMed ID: 7357452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detailed organisation of the human midbrain periaqueductal grey revealed using ultra-high field magnetic resonance imaging.
    Tinoco Mendoza FA; Hughes TES; Robertson RV; Crawford LS; Meylakh N; Macey PM; Macefield VG; Keay KA; Henderson LA
    Neuroimage; 2023 Feb; 266():119828. PubMed ID: 36549431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.