These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 11857275)

  • 1. The simultaneous biosynthesis and uptake of amino acids by Lactococcus lactis studied by (13)C-labeling experiments.
    Jensen NB; Christensen B; Nielsen J; Villadsen J
    Biotechnol Bioeng; 2002 Apr; 78(1):11-6. PubMed ID: 11857275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning, expression, and functional characterization of secondary amino acid transporters of Lactococcus lactis.
    Trip H; Mulder NL; Lolkema JS
    J Bacteriol; 2013 Jan; 195(2):340-50. PubMed ID: 23144255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The metabolic network of Lactococcus lactis: distribution of (14)C-labeled substrates between catabolic and anabolic pathways.
    Novák L; Loubiere P
    J Bacteriol; 2000 Feb; 182(4):1136-43. PubMed ID: 10648541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of diacetyl and acetoin by Lactococcus lactis via aspartate catabolism.
    Le Bars D; Yvon M
    J Appl Microbiol; 2008 Jan; 104(1):171-7. PubMed ID: 17850313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiology and substrate specificity of two closely related amino acid transporters, SerP1 and SerP2, of Lactococcus lactis.
    Noens EE; Lolkema JS
    J Bacteriol; 2015 Mar; 197(5):951-8. PubMed ID: 25535271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutritional requirements and media development for Lactococcus lactis IL1403.
    Aller K; Adamberg K; Timarova V; Seiman A; Feštšenko D; Vilu R
    Appl Microbiol Biotechnol; 2014 Jul; 98(13):5871-81. PubMed ID: 24626960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid uptake profiling of wild type and recombinant Streptomyces lividans TK24 batch fermentations.
    D'Huys PJ; Lule I; Van Hove S; Vercammen D; Wouters C; Bernaerts K; Anné J; Van Impe JF
    J Biotechnol; 2011 Apr; 152(4):132-43. PubMed ID: 20797416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of (15)N-labelled yeast hydrolysate in Lactococcus lactis IL1403 culture indicates co-consumption of peptide-bound and free amino acids with simultaneous efflux of free amino acids.
    Kevvai K; Kütt ML; Nisamedtinov I; Paalme T
    Antonie Van Leeuwenhoek; 2014 Mar; 105(3):511-22. PubMed ID: 24389760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic signature of Lactococcus lactis NCDO763 cultivated in milk.
    Gitton C; Meyrand M; Wang J; Caron C; Trubuil A; Guillot A; Mistou MY
    Appl Environ Microbiol; 2005 Nov; 71(11):7152-63. PubMed ID: 16269754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relation of growth of Streptococcus lactis and Streptococcus cremoris to amino acid transport.
    Poolman B; Konings WN
    J Bacteriol; 1988 Feb; 170(2):700-7. PubMed ID: 3123462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemically defined media and auxotrophy of the prolific l-lactic acid producer Lactococcus lactis IO-1.
    Machii M; Watanabe S; Zendo T; Chibazakura T; Sonomoto K; Shimizu-Kadota M; Yoshikawa H
    J Biosci Bioeng; 2013 May; 115(5):481-4. PubMed ID: 23287501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling Lactococcus lactis using a genome-scale flux model.
    Oliveira AP; Nielsen J; Förster J
    BMC Microbiol; 2005 Jun; 5():39. PubMed ID: 15982422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-omics approach to study the growth efficiency and amino acid metabolism in Lactococcus lactis at various specific growth rates.
    Lahtvee PJ; Adamberg K; Arike L; Nahku R; Aller K; Vilu R
    Microb Cell Fact; 2011 Feb; 10():12. PubMed ID: 21349178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N5-(1-carboxyethyl)-ornithine, a new amino acid from the intracellular pool of Streptococcus lactis.
    Thompson J; Curtis MA; Miller SP
    J Bacteriol; 1986 Aug; 167(2):522-9. PubMed ID: 3090017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of Chemically Defined Media to Express Trp-Analog-Labeled Proteins in a Lactococcus lactis Trp Auxotroph.
    Shao J; Marcondes MF; Oliveira V; Broos J
    J Mol Microbiol Biotechnol; 2016; 26(4):269-76. PubMed ID: 27172771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excess of threonine compared with serine promotes threonine aldolase activity in Lactococcus lactis IL1403.
    Aller K; Adamberg K; Reile I; Timarova V; Peebo K; Vilu R
    Microbiology (Reading); 2015 May; 161(Pt 5):1073-1080. PubMed ID: 25743155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased biomass yield of Lactococcus lactis during energetically limited growth and respiratory conditions.
    Koebmann B; Blank LM; Solem C; Petranovic D; Nielsen LK; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):25-33. PubMed ID: 17824842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced production of nisin by co-culture of Lactococcus lactis sub sp. lactis and Yarrowia lipolytica in molasses based medium.
    Ariana M; Hamedi J
    J Biotechnol; 2017 Aug; 256():21-26. PubMed ID: 28694185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative Rates of Amino Acid Import via the ABC Transporter GlnPQ Determine the Growth Performance of Lactococcus lactis.
    Fulyani F; Schuurman-Wolters GK; Slotboom DJ; Poolman B
    J Bacteriol; 2016 Feb; 198(3):477-85. PubMed ID: 26553850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reciprocal 13C-labeling: a method for investigating the catabolism of cosubstrates.
    Christensen B; Nielsen J
    Biotechnol Prog; 2002; 18(2):163-6. PubMed ID: 11934281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.