These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 11857275)

  • 21. Extracellular nitrogenous metabolits in Serratia marcescens.
    Marx A; Sendrea M; Petcovici M
    Arch Roum Pathol Exp Microbiol; 1970; 29(1):183-6. PubMed ID: 4936236
    [No Abstract]   [Full Text] [Related]  

  • 22. Studies on amino acid metabolism in the brain using 15N-labeled precursors.
    Jones P; Bachelard HS
    Neurochem Res; 1999 Nov; 24(11):1327-31. PubMed ID: 10555771
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Peptide utilization by Lactococcus lactis and Leuconostoc mesenteroides.
    Foucaud C; Hemme D; Desmazeaud M
    Lett Appl Microbiol; 2001 Jan; 32(1):20-5. PubMed ID: 11169036
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Peptide uptake is essential for growth of Lactococcus lactis on the milk protein casein.
    Smid EJ; Plapp R; Konings WN
    J Bacteriol; 1989 Nov; 171(11):6135-40. PubMed ID: 2509429
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Utilization of dipeptides by Lactococcus lactis ssp. cremoris.
    van Boven A; Konings WN
    Biochimie; 1988 Apr; 70(4):535-42. PubMed ID: 3139073
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic aspects of aromatic amino acid biosynthesis in Lactococcus lactis.
    Griffin HG; Gasson MJ
    Mol Gen Genet; 1995 Jan; 246(1):119-27. PubMed ID: 7823907
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Components of fermentation medium regulate bacteriocin synthesis by the recombinant strain Lactococcus lactis subsp. lactis F-116].
    Stoianova LG; Levina NA
    Mikrobiologiia; 2006; 75(3):342-8. PubMed ID: 16871800
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the role of para-aminobenzoic acid biosynthesis in folate production by Lactococcus lactis.
    Wegkamp A; van Oorschot W; de Vos WM; Smid EJ
    Appl Environ Microbiol; 2007 Apr; 73(8):2673-81. PubMed ID: 17308179
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of an essential gene responsible for D-Asp incorporation in the Lactococcus lactis peptidoglycan crossbridge.
    Veiga P; Piquet S; Maisons A; Furlan S; Courtin P; Chapot-Chartier MP; Kulakauskas S
    Mol Microbiol; 2006 Dec; 62(6):1713-24. PubMed ID: 17083466
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Biosynthesis of free amino acids by Proteus vulgaris 14K on media with organic acids].
    Shaposhnikov VN; Isaeva VS
    Mikrobiologiia; 1967; 36(2):197-204. PubMed ID: 5619864
    [No Abstract]   [Full Text] [Related]  

  • 31. Genomic features of Lactococcus lactis IO-1, a lactic acid bacterium that utilizes xylose and produces high levels of L-lactic acid.
    Shimizu-Kadota M; Kato H; Shiwa Y; Oshima K; Machii M; Araya-Kojima T; Zendo T; Hattori M; Sonomoto K; Yoshikawa H
    Biosci Biotechnol Biochem; 2013; 77(9):1804-8. PubMed ID: 24018670
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lactococcus lactis as a cell factory: a twofold increase in phosphofructokinase activity results in a proportional increase in specific rates of glucose uptake and lactate formation.
    Papagianni M; Avramidis N
    Enzyme Microb Technol; 2011 Jul; 49(2):197-202. PubMed ID: 22112409
    [TBL] [Abstract][Full Text] [Related]  

  • 33. pH-controlled cell release and biomass distribution of alginate-immobilized Lactococcus lactis subsp. lactis.
    Klinkenberg G; Lystad KQ; Levine DW; Dyrset N
    J Appl Microbiol; 2001 Oct; 91(4):705-14. PubMed ID: 11576308
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flux and reflux: metabolite reflux in plant suspension cells and its implications for isotope-assisted metabolic flux analysis.
    Nargund S; Misra A; Zhang X; Coleman GD; Sriram G
    Mol Biosyst; 2014 Jun; 10(6):1496-508. PubMed ID: 24675729
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ornithine transport and exchange in Streptococcus lactis.
    Thompson J
    J Bacteriol; 1987 Sep; 169(9):4147-53. PubMed ID: 3114235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Effect of the initial pH value of the medium on the growth of Streptococcus lactis and the biosynthesis of nisin].
    Egorov NS; Baranova IP; Grushina VA
    Antibiotiki; 1976 Jun; 21(6):499-501. PubMed ID: 7995
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glutamate dehydrogenase activity can be transmitted naturally to Lactococcus lactis strains to stimulate amino acid conversion to aroma compounds.
    Tanous C; Chambellon E; Le Bars D; Delespaul G; Yvon M
    Appl Environ Microbiol; 2006 Feb; 72(2):1402-9. PubMed ID: 16461693
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lysine and Threonine Biosynthesis from Aspartate Contributes to Staphylococcus aureus Growth in Calf Serum.
    Oogai Y; Yamaguchi M; Kawada-Matsuo M; Sumitomo T; Kawabata S; Komatsuzawa H
    Appl Environ Microbiol; 2016 Oct; 82(20):6150-6157. PubMed ID: 27520813
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluating (13)C enrichment data of free amino acids for precise metabolic flux analysis.
    Mori E; Furusawa C; Kajihata S; Shirai T; Shimizu H
    Biotechnol J; 2011 Nov; 6(11):1377-87. PubMed ID: 22069095
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relative role of the glutaminase, glutamate dehydrogenase, and AMP-deaminase pathways in hepatic ureagenesis: studies with 15N.
    Nissim I; Cattano C; Nissim I; Yudkoff M
    Arch Biochem Biophys; 1992 Feb; 292(2):393-401. PubMed ID: 1346240
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.