These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 1185764)

  • 1. Ca+2 uptake and related factors in skeletal and cardiac muscle sarcotubular preparations: investigation with a new technique.
    Atweh S; Sahyoun N
    J Med Liban; 1975; 28(2):335-48. PubMed ID: 1185764
    [No Abstract]   [Full Text] [Related]  

  • 2. Phospholamban-modulated Ca2+ transport in cardiac and slow twitch skeletal muscle sarcoplasmic reticulum.
    Movsesian MA; Morris GL; Wang JH; Krall J
    Second Messengers Phosphoproteins; 1992-1993; 14(3):151-61. PubMed ID: 1345340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytochemical studies on sarcoplasmic reticulum of heart and skeletal muscle.
    Agostini B; Suko J; Hasselbach W
    Recent Adv Stud Cardiac Struct Metab; 1975; 5():125-31. PubMed ID: 1188149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Calcium transport and ATPase activity of mitochondria and sarcoplasmic reticulum fragments of rabbit heart and muscle in hypercholesteremia].
    Chernysheva GV; Stoĭda LV; Kuz'mina IL
    Biull Eksp Biol Med; 1980 Mar; 89(3):292-4. PubMed ID: 6446328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sarcoplasmic reticular and mitochondrial calcium transport in cardiac hypertrophy.
    Heyliger CE; Ganguly PK; Dhalla NS
    Can J Cardiol; 1985; 1(6):401-8. PubMed ID: 2944571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of [3H]ryanodine receptors and Ca++ release from rat cardiac and rabbit skeletal muscle sarcoplasmic reticulum.
    Zimányi I; Pessah IN
    J Pharmacol Exp Ther; 1991 Mar; 256(3):938-46. PubMed ID: 1848635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative ultrastructure and calcium transport in heart and skeletal muscle microsomes.
    Baskin RJ; Deamer DW
    J Cell Biol; 1969 Dec; 43(3):610-7. PubMed ID: 5351408
    [No Abstract]   [Full Text] [Related]  

  • 8. Calcium-binding sites and calcium uptake in cardiac microsomes: effects of varying Ca++ concentration, and of an adenosine-3',5'- monophosphate-dependent protein kinase.
    Katz AM; Repke DI; Kirchberger MA; Tada M
    Recent Adv Stud Cardiac Struct Metab; 1974; 4():427-36. PubMed ID: 4377615
    [No Abstract]   [Full Text] [Related]  

  • 9. Effect of alkaline cations on ATPase activity and Ca 2+ uptake of skeletal muscle microsomes.
    Costa MJ; Perret M; De Meis L
    An Acad Bras Cienc; 1970 Jun; 42(2):269-74. PubMed ID: 4258109
    [No Abstract]   [Full Text] [Related]  

  • 10. [Effect of caffeine on active Ca2+ ion transport in a homogenate of skeletal muscles and myocardium].
    Ritov VB; Murzakhmetova MK
    Biull Eksp Biol Med; 1985 Aug; 100(8):176-9. PubMed ID: 4027366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The effect of thyroxine on cAMP-dependent protein phosphorylation and ion transport in the sarcolemma of the heart and skeletal muscles].
    Famulski KS; Wojtczak AB
    Postepy Biochem; 1989; 35(3):329-36. PubMed ID: 2561690
    [No Abstract]   [Full Text] [Related]  

  • 12. Ca2+-transport in skeletal muscle sarcoplasmic reticulum of the chronically diabetic rat.
    Eibschutz B; Lopaschuk GD; McNeill JH; Katz S
    Res Commun Chem Pathol Pharmacol; 1984 Aug; 45(2):301-4. PubMed ID: 6484314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclic ADP-ribose as an endogenous regulator of the non-skeletal type ryanodine receptor Ca2+ channel.
    Mészáros LG; Bak J; Chu A
    Nature; 1993 Jul; 364(6432):76-9. PubMed ID: 8391127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ryanodine: a modifier of sarcoplasmic reticulum calcium release in striated muscle.
    Sutko JL; Ito K; Kenyon JL
    Fed Proc; 1985 Dec; 44(15):2984-8. PubMed ID: 2415406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Comparative evaluation of the effect of vitamin E deficiency on lipid peroxidation and Ca2+ transport in heart and skeletal muscles].
    Arkhipenko IuV; Dzhaparidze LM; Gutkin DV; Rozhitskaia II; Spirichev VB
    Vopr Med Khim; 1987; 33(1):122-7. PubMed ID: 3577050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacological differentiation between intracellular calcium pump isoforms.
    Engelender S; De Meis L
    Mol Pharmacol; 1996 Nov; 50(5):1243-52. PubMed ID: 8913356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The contractile function and calcium-transport system of the myocardium in aging].
    Frol'kis VV; Frol'kis RA; Mkhitarian LS; Shevchuk VG; Fraĭfel'd VE
    Fiziol Zh SSSR Im I M Sechenova; 1988 Feb; 74(2):224-33. PubMed ID: 2967197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of shock on calcium accumulation by cardiac sarcoplasmic reticulum.
    Estes JE; Farley PE; Goldfarb RD
    Adv Shock Res; 1980; 3():229-37. PubMed ID: 6458201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Several peculiarities of the interaction of troponin T and troponin C of skeletal and cardiac muscle].
    Verin AD; Barskaia NV; Gusev NB
    Biokhimiia; 1984 Aug; 49(8):1375-82. PubMed ID: 6498238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the radiocalcium uptake and the adenosine triphosphatases of skeletal and cardiac sarcoplasmic reticulum fractions (SRF).
    Scales B; McIntosh DA
    J Pharmacol Exp Ther; 1968 Apr; 160(2):249-60. PubMed ID: 4296695
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.