These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 11858811)

  • 1. Changing the structurally effective mineral content of bone with in vitro fluoride treatment.
    DePaula CA; Abjornson C; Pan Y; Kotha SP; Koike K; Guzelsu N
    J Biomech; 2002 Mar; 35(3):355-61. PubMed ID: 11858811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High frequency ultrasound prediction of mechanical properties of cortical bone with varying amount of mineral content.
    Kotha SP; DePaula CA; Mann AB; Guzelsu N
    Ultrasound Med Biol; 2008 Apr; 34(4):630-7. PubMed ID: 18055098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Varying the mechanical properties of bone tissue by changing the amount of its structurally effective bone mineral content.
    Kotha SP; Walsh WR; Pan Y; Guzelsu N
    Biomed Mater Eng; 1998; 8(5-6):321-34. PubMed ID: 10081595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compressive properties of cortical bone: mineral-organic interfacial bonding.
    Walsh WR; Guzelsu N
    Biomaterials; 1994 Jan; 15(2):137-45. PubMed ID: 8011860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation between longitudinal, circumferential, and radial moduli in cortical bone: effect of mineral content.
    Macione J; Depaula CA; Guzelsu N; Kotha SP
    J Mech Behav Biomed Mater; 2010 Jul; 3(5):405-13. PubMed ID: 20416555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uniform partial dissolution of bone mineral by using fluoride and phosphate ions combination.
    DePaula CA; Pan Y; Guzelsu N
    Connect Tissue Res; 2008; 49(5):328-42. PubMed ID: 18991086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of bone mineral content on the tensile properties of cortical bone: experiments and theory.
    Kotha SP; Guzelsu N
    J Biomech Eng; 2003 Dec; 125(6):785-93. PubMed ID: 14986402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased ash contents and estimation of dissolution from chemical changes due to in-vitro fluoride treatments.
    Kotha SP; DePaula CA; Koike K; Pan Y; Ohno M; Abjornson C; Rangarajan S; Guzelsu N
    Connect Tissue Res; 2002; 43(1):8-21. PubMed ID: 12180270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Material and compositional properties of selectively demineralized cortical bone.
    Broz JJ; Simske SJ; Greenberg AR
    J Biomech; 1995 Nov; 28(11):1357-68. PubMed ID: 8522548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents.
    Novitskaya E; Chen PY; Lee S; Castro-Ceseña A; Hirata G; Lubarda VA; McKittrick J
    Acta Biomater; 2011 Aug; 7(8):3170-7. PubMed ID: 21571104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro sodium fluoride exposure decreases torsional and bending strength and increases ductility of mouse femora.
    Silva MJ; Ulrich SR
    J Biomech; 2000 Feb; 33(2):231-4. PubMed ID: 10653038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructure and elastic modulus of single trabecula in bovine cancellous bone.
    Yamada S; Tadano S; Fukuda S
    J Biomech; 2014 Nov; 47(14):3482-7. PubMed ID: 25267574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of storage time in saline solution on the material properties of cortical bone tissue.
    Zhang G; Deng X; Guan F; Bai Z; Cao L; Mao H
    Clin Biomech (Bristol, Avon); 2018 Aug; 57():56-66. PubMed ID: 29933215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orientation of mineral in bovine bone and the anisotropic mechanical properties of plexiform bone.
    Sasaki N; Ikawa T; Fukuda A
    J Biomech; 1991; 24(1):57-61. PubMed ID: 1851177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneity of the mechanical properties of demineralized bone.
    Catanese J; Iverson EP; Ng RK; Keaveny TM
    J Biomech; 1999 Dec; 32(12):1365-9. PubMed ID: 10569717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The limitations of canine trabecular bone as a model for human: a biomechanical study.
    Kuhn JL; Goldstein SA; Ciarelli MJ; Matthews LS
    J Biomech; 1989; 22(2):95-107. PubMed ID: 2708399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elastic and physicochemical relationships within cortical bone.
    Kohles SS; Martinez DA
    J Biomed Mater Res; 2000 Mar; 49(4):479-88. PubMed ID: 10602081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An improved method for the measurement of mechanical properties of bone by nanoindentation.
    Tang B; Ngan AH; Lu WW
    J Mater Sci Mater Med; 2007 Sep; 18(9):1875-81. PubMed ID: 17522963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro non-enzymatic ribation reduces post-yield strain accommodation in cortical bone.
    Willett TL; Sutty S; Gaspar A; Avery N; Grynpas M
    Bone; 2013 Feb; 52(2):611-22. PubMed ID: 23178516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical-chemical analyses and sub-chronic systemic toxicity of chemical treated organic bovine bone.
    Lee KI; Lee JS; Lee KS; Jung HH; Ahn CM; Kim YS; Shim YB; Jang JW
    Regul Toxicol Pharmacol; 2015 Dec; 73(3):747-53. PubMed ID: 26529390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.