These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 11859197)

  • 1. Functional MRI of macaque monkeys performing a cognitive set-shifting task.
    Nakahara K; Hayashi T; Konishi S; Miyashita Y
    Science; 2002 Feb; 295(5559):1532-6. PubMed ID: 11859197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple components of lateral posterior parietal activation associated with cognitive set shifting.
    Asari T; Konishi S; Jimura K; Miyashita Y
    Neuroimage; 2005 Jul; 26(3):694-702. PubMed ID: 15955479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cognitive set reconfiguration signaled by macaque posterior parietal neurons.
    Kamigaki T; Fukushima T; Miyashita Y
    Neuron; 2009 Mar; 61(6):941-51. PubMed ID: 19324002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Who comes first? The role of the prefrontal and parietal cortex in cognitive control.
    Brass M; Ullsperger M; Knoesche TR; von Cramon DY; Phillips NA
    J Cogn Neurosci; 2005 Sep; 17(9):1367-75. PubMed ID: 16197690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient activation of inferior prefrontal cortex during cognitive set shifting.
    Konishi S; Nakajima K; Uchida I; Kameyama M; Nakahara K; Sekihara K; Miyashita Y
    Nat Neurosci; 1998 May; 1(1):80-4. PubMed ID: 10195114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural networks of response shifting: influence of task speed and stimulus material.
    Loose R; Kaufmann C; Tucha O; Auer DP; Lange KW
    Brain Res; 2006 May; 1090(1):146-55. PubMed ID: 16643867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential superior prefrontal activity on initial versus subsequent shifts in naive subjects.
    Konishi S; Morimoto H; Jimura K; Asari T; Chikazoe J; Yamashita K; Hirose S; Miyashita Y
    Neuroimage; 2008 Jun; 41(2):575-80. PubMed ID: 18417365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in cerebral activations during movement execution and imagery after parietal cortex TMS interleaved with 3T MRI.
    de Vries PM; de Jong BM; Bohning DE; Walker JA; George MS; Leenders KL
    Brain Res; 2009 Aug; 1285():58-68. PubMed ID: 19523932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The architecture of cognitive control in the human prefrontal cortex.
    Koechlin E; Ody C; Kouneiher F
    Science; 2003 Nov; 302(5648):1181-5. PubMed ID: 14615530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The functional neuroanatomy of classic delayed response tasks in humans and the limitations of cross-method convergence in prefrontal function.
    Turner GR; Levine B
    Neuroscience; 2006 Apr; 139(1):327-37. PubMed ID: 16324791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurons and the synaptic basis of the fMRI signal associated with cognitive flexibility.
    Stemme A; Deco G; Busch A; Schneider WX
    Neuroimage; 2005 Jun; 26(2):454-70. PubMed ID: 15907303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization of executive functions in dual-task performance with fMRI.
    Szameitat AJ; Schubert T; Müller K; Von Cramon DY
    J Cogn Neurosci; 2002 Nov; 14(8):1184-99. PubMed ID: 12495525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single neurons in posterior parietal cortex of monkeys encode cognitive set.
    Stoet G; Snyder LH
    Neuron; 2004 Jun; 42(6):1003-12. PubMed ID: 15207244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional connectivity of the fusiform gyrus during a face-matching task in subjects with mild cognitive impairment.
    Bokde AL; Lopez-Bayo P; Meindl T; Pechler S; Born C; Faltraco F; Teipel SJ; Möller HJ; Hampel H
    Brain; 2006 May; 129(Pt 5):1113-24. PubMed ID: 16520329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State-related and item-related neural correlates of successful memory encoding.
    Otten LJ; Henson RN; Rugg MD
    Nat Neurosci; 2002 Dec; 5(12):1339-44. PubMed ID: 12402040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient and sustained brain activity during anticipatory visuospatial attention.
    Luks TL; Sun FT; Dale CL; Miller WL; Simpson GV
    Neuroreport; 2008 Jan; 19(2):155-9. PubMed ID: 18185100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cognitive control mechanisms revealed by ERP and fMRI: evidence from repeated task-switching.
    Swainson R; Cunnington R; Jackson GM; Rorden C; Peters AM; Morris PG; Jackson SR
    J Cogn Neurosci; 2003 Aug; 15(6):785-99. PubMed ID: 14511532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural correlates of spatial working memory in humans: a functional magnetic resonance imaging study comparing visual and tactile processes.
    Ricciardi E; Bonino D; Gentili C; Sani L; Pietrini P; Vecchi T
    Neuroscience; 2006 Apr; 139(1):339-49. PubMed ID: 16324793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal brain dynamics during preparatory set shifting: MEG evidence.
    Periáñez JA; Maestú F; Barceló F; Fernández A; Amo C; Ortiz Alonso T
    Neuroimage; 2004 Feb; 21(2):687-95. PubMed ID: 14980570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuronal signal dynamics during preparation and execution for behavioral shifting in macaque posterior parietal cortex.
    Kamigaki T; Fukushima T; Miyashita Y
    J Cogn Neurosci; 2011 Sep; 23(9):2503-20. PubMed ID: 21254803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.