BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 11859411)

  • 1. Induction of apoptosis by chemotherapeutic drugs: the role of FADD in activation of caspase-8 and synergy with death receptor ligands in ovarian carcinoma cells.
    Milner AE; Palmer DH; Hodgkin EA; Eliopoulos AG; Knox PG; Poole CJ; Kerr DJ; Young LS
    Cell Death Differ; 2002 Mar; 9(3):287-300. PubMed ID: 11859411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CD40 induces apoptosis in carcinoma cells through activation of cytotoxic ligands of the tumor necrosis factor superfamily.
    Eliopoulos AG; Davies C; Knox PG; Gallagher NJ; Afford SC; Adams DH; Young LS
    Mol Cell Biol; 2000 Aug; 20(15):5503-15. PubMed ID: 10891490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caspase-independent cell killing by Fas-associated protein with death domain.
    Kawahara A; Ohsawa Y; Matsumura H; Uchiyama Y; Nagata S
    J Cell Biol; 1998 Nov; 143(5):1353-60. PubMed ID: 9832562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics of the killing mechanism of human natural killer cells against hepatocellular carcinoma cell lines HepG2 and Hep3B.
    Kim HR; Park HJ; Park JH; Kim SJ; Kim K; Kim J
    Cancer Immunol Immunother; 2004 May; 53(5):461-70. PubMed ID: 14648068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CD95/Apo-1/Fas: independent cell death induced by doxorubicin in normal cultured cardiomyocytes.
    Jeremias I; Stahnke K; Debatin KM
    Cancer Immunol Immunother; 2005 Jul; 54(7):655-62. PubMed ID: 15703961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CD40L induces multidrug resistance to apoptosis in breast carcinoma and lymphoma cells through caspase independent and dependent pathways.
    Voorzanger-Rousselot N; Alberti L; Blay JY
    BMC Cancer; 2006 Mar; 6():75. PubMed ID: 16545138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting cell death in tumors by activating caspases.
    MacKenzie SH; Clark AC
    Curr Cancer Drug Targets; 2008 Mar; 8(2):98-109. PubMed ID: 18336192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redirecting tyrosine kinase signaling to an apoptotic caspase pathway through chimeric adaptor proteins.
    Howard PL; Chia MC; Del Rizzo S; Liu FF; Pawson T
    Proc Natl Acad Sci U S A; 2003 Sep; 100(20):11267-72. PubMed ID: 13679576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Death receptors as targets for anti-cancer therapy.
    Papenfuss K; Cordier SM; Walczak H
    J Cell Mol Med; 2008 Dec; 12(6B):2566-85. PubMed ID: 19210756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of anoikis by extrinsic death receptor pathways.
    Han YH; Wang Y; Lee SJ; Jin MH; Sun HN; Kwon T
    Cell Commun Signal; 2023 Sep; 21(1):227. PubMed ID: 37667281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caspase-driven cancer therapies: Navigating the bridge between lab discoveries and clinical applications.
    Allani M; Akhilesh ; Tiwari V
    Cell Biochem Funct; 2024 Mar; 42(2):e3944. PubMed ID: 38348642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of DISE in ovarian cancer cells
    Murmann AE; McMahon KM; Haluck-Kangas A; Ravindran N; Patel M; Law CY; Brockway S; Wei JJ; Thaxton CS; Peter ME
    Oncotarget; 2017 Oct; 8(49):84643-84658. PubMed ID: 29156673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preclinical evaluation on the tumor suppression efficiency and combination drug effects of fermented wheat germ extract in human ovarian carcinoma cells.
    Wang CW; Wang CK; Chang YJ; Choong CY; Lin CS; Tai CJ; Tai CJ
    Evid Based Complement Alternat Med; 2015; 2015():570785. PubMed ID: 25815037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New advance in caspase-independent programmed cell death and its potential in cancer therapy.
    Qi R; Liu XY
    Int J Biomed Sci; 2006 Sep; 2(3):211-6. PubMed ID: 23674984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apoptosis induced by anticancer drugs.
    Hickman JA
    Cancer Metastasis Rev; 1992 Sep; 11(2):121-39. PubMed ID: 1327566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three in-one fenestrated approaches of yolk-shell, silver-silica nanoparticles: A comparative study of antibacterial, antifungal and anti-cancerous applications.
    Singh P; Katkar PK; Walski T; Bohara RA
    Heliyon; 2023 Aug; 9(8):e18034. PubMed ID: 37576197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional Lipophobic Polymer Dots from Cyclodextrin: Antimicrobial/Anticancer Laborers and Silver Ions Chemo-Sensor.
    Almahri A; Al-Bonayan AM; Attar RMS; Karkashan A; Abbas B; Al-Qahtani SD; El-Metwaly NM
    ACS Omega; 2023 May; 8(19):16956-16965. PubMed ID: 37214711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FADD as a key molecular player in cancer progression.
    Liu Y; Li X; Zhou X; Wang J; Ao X
    Mol Med; 2022 Nov; 28(1):132. PubMed ID: 36348274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interest and Limits of [
    Jouberton E; Schmitt S; Maisonial-Besset A; Chautard E; Penault-Llorca F; Cachin F
    Front Oncol; 2021; 11():789769. PubMed ID: 34988022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATRX/EZH2 complex epigenetically regulates FADD/PARP1 axis, contributing to TMZ resistance in glioma.
    Han B; Meng X; Wu P; Li Z; Li S; Zhang Y; Zha C; Ye Q; Jiang C; Cai J; Jiang T
    Theranostics; 2020; 10(7):3351-3365. PubMed ID: 32194873
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.