BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 11860128)

  • 1. Pore network modelling of the behaviour of a solute in chromatography media: transient and steady-state diffusion properties.
    Bryntesson LM
    J Chromatogr A; 2002 Feb; 945(1-2):103-15. PubMed ID: 11860128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling and simulation of the dynamic behavior of monoliths. Effects of pore structure from pore network model analysis and comparison with columns packed with porous spherical particles.
    Liapis AI; Meyers JJ; Crosser OK
    J Chromatogr A; 1999 Dec; 865(1-2):13-25. PubMed ID: 10674927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of diffusion parameters in functionalized silicas with modulated porosity. Part II: pore network modeling.
    Armatas GS; Petrakis DE; Pomonis PJ
    J Chromatogr A; 2005 May; 1074(1-2):61-9. PubMed ID: 15941040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network modeling of the convective flow and diffusion of molecules adsorbing in monoliths and in porous particles packed in a chromatographic column.
    Meyers JJ; Liapis AI
    J Chromatogr A; 1999 Aug; 852(1):3-23. PubMed ID: 10480225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of mercury porosimetry for the evaluation of pore shape and intrusion-extrusion hysteresis.
    Shively ML
    J Pharm Sci; 1991 Apr; 80(4):376-9. PubMed ID: 1650824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of Spatial Correlation in Porous Media and Its Effect on Mercury Porosimetry.
    Bryant S; Mason G; Mellor D
    J Colloid Interface Sci; 1996 Jan; 177(1):88-100. PubMed ID: 10479420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pore network as a model of porous media: comparison between nonhierarchical and hierarchical organizations of pores.
    Vocka R; Dubois MA
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct; 62(4 Pt B):5216-24. PubMed ID: 11089083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive transport in porous media: pore-network model approach compared to pore-scale model.
    Varloteaux C; Vu MT; Békri S; Adler PM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023010. PubMed ID: 23496613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport.
    Xiong Q; Baychev TG; Jivkov AP
    J Contam Hydrol; 2016 Sep; 192():101-117. PubMed ID: 27442725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of cement-bonded materials by multi-cycle mercury intrusion and nitrogen sorption.
    Kaufmann J; Loser R; Leemann A
    J Colloid Interface Sci; 2009 Aug; 336(2):730-7. PubMed ID: 19505695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the distribution of consolidants and interpretation of mercury porosimetry data in a sandstone porous network using LSCM.
    Zoghlami K; Gómez-Gras D
    Microsc Res Tech; 2004 Dec; 65(6):270-5. PubMed ID: 15662619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pore network modelling: determination of the dynamic profiles of the pore diffusivity and its effect on column performance as the loading of the solute in the adsorbed phase varies with time.
    Meyers JJ; Crosser OK; Liapis AI
    J Chromatogr A; 2001 Jan; 908(1-2):35-47. PubMed ID: 11218133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification of Pore-fracture Combination Types in Tectonic Coal Based on Mercury Intrusion Porosimetry and Nuclear Magnetic Resonance.
    Ni X; Zhao Z; Wang B; Li Z
    ACS Omega; 2020 Dec; 5(51):33225-33234. PubMed ID: 33403284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling of porosity and waterfronts in cellulosic pellets for understanding drug release behavior.
    Gomez-Carracedo A; Martinez-Pacheco R; Concheiro A; Gomez-Amoza JL
    Int J Pharm; 2010 Mar; 388(1-2):101-6. PubMed ID: 20038448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mercury cyclic porosimetry: Measuring pore-size distributions corrected for both pore-space accessivity and contact-angle hysteresis.
    Gu Z; Goulet R; Levitz P; Ihiawakrim D; Ersen O; Bazant MZ
    J Colloid Interface Sci; 2021 Oct; 599():255-261. PubMed ID: 33945972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining mercury thermoporometry with integrated gas sorption and mercury porosimetry to improve accuracy of pore-size distributions for disordered solids.
    Bafarawa B; Nepryahin A; Ji L; Holt EM; Wang J; Rigby SP
    J Colloid Interface Sci; 2014 Jul; 426():72-9. PubMed ID: 24863767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting intraparticle diffusivity as function of stationary phase characteristics in preparative chromatography.
    Schultze-Jena A; Boon MA; de Winter DAM; Bussmann PJT; Janssen AEM; van der Padt A
    J Chromatogr A; 2020 Feb; 1613():460688. PubMed ID: 31813564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Macroscopic Structural Disorder in Porous Media Using Mercury Porosimetry.
    Rigby SP; Fletcher RS; Riley SN
    J Colloid Interface Sci; 2001 Aug; 240(1):190-210. PubMed ID: 11446801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Barite precipitation in porous media: Impact of pore structure and surface charge on ionic diffusion.
    Rajyaguru A; Wang J; Wittebroodt C; Bildstein O; Detilleux V; Lagneau V; Savoye S
    J Contam Hydrol; 2021 Oct; 242():103851. PubMed ID: 34174478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mercury Penetration and Snap-off in Lenticular Pores.
    Tsakiroglou CD; Kolonis GB; Roumeliotis TC; Payatakes AC
    J Colloid Interface Sci; 1997 Sep; 193(2):259-72. PubMed ID: 9344527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.