BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 11860739)

  • 1. Norepinephrine metabolism in neuron: dissociation between 3,4-dihydroxyphenylglycol and 3,4-dihydroxymandelic acid pathways.
    Dong WX; Ni XL
    Acta Pharmacol Sin; 2002 Jan; 23(1):59-65. PubMed ID: 11860739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasma dihydroxyphenylglycol (DHPG) in the in vivo assessment of human neuronal norepinephrine metabolism.
    Izzo JL; Thompson DA; Horwitz D
    Life Sci; 1985 Sep; 37(11):1033-8. PubMed ID: 4033349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of MAO-A and MAO-B in the metabolic degradation of noradrenaline in human arteries.
    Figueiredo IV; Caramona M; Paiva MQ; Guimarães S
    J Auton Pharmacol; 1998 Apr; 18(2):123-8. PubMed ID: 9730267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal metabolism of catecholamines in pithed and electrically stimulated rats.
    Dong WX; Schneider J; Dabiré H; Safar M; Cuche JL
    J Auton Nerv Syst; 1995 Jul; 54(1):41-8. PubMed ID: 7594210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radioenzymatic assay for plasma dihydroxyphenylglycol (DHPG), dihydroxymandelic acid (DOMA) and dihydroxyphenylacetic acid (DOPAC).
    Izzo JL; Greulich D
    Life Sci; 1983 Aug; 33(5):483-8. PubMed ID: 6877032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different metabolism of norepinephrine and epinephrine by catechol-O-methyltransferase and monoamine oxidase in rats.
    Eisenhofer G; Finberg JP
    J Pharmacol Exp Ther; 1994 Mar; 268(3):1242-51. PubMed ID: 8138937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of monoamine oxidase inhibitors on levels of catechols and homovanillic acid in striatum and plasma.
    Hovevey-Sion D; Kopin IJ; Stull RW; Goldstein DS
    Neuropharmacology; 1989 Aug; 28(8):791-7. PubMed ID: 2506486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasma dihydroxyphenylglycol and the intraneuronal disposition of norepinephrine in humans.
    Goldstein DS; Eisenhofer G; Stull R; Folio CJ; Keiser HR; Kopin IJ
    J Clin Invest; 1988 Jan; 81(1):213-20. PubMed ID: 3335637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of aldehyde/aldose reductase inhibition on neuronal metabolism of norepinephrine.
    Kawamura M; Kopin IJ; Kador PF; Sato S; Tjurmina O; Eisenhofer G
    J Auton Nerv Syst; 1997 Oct; 66(3):145-8. PubMed ID: 9406118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The neuronal and extraneuronal origins of plasma 3-methoxy-4-hydroxyphenylglycol in rats.
    Eisenhofer G; Pecorella W; Pacak K; Hooper D; Kopin IJ; Goldstein DS
    J Auton Nerv Syst; 1994 Dec; 50(1):93-107. PubMed ID: 7844319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal metabolism of catecholamines: plasma DHPG, DOMA and DOPAC.
    Dong WX; Schneider J; Lacolley P; Brisac AM; Safar M; Cuche JL
    J Auton Nerv Syst; 1993; 44(2-3):109-17. PubMed ID: 8227950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dihydroxyphenylglycol and intraneuronal metabolism of endogenous and exogenous norepinephrine in the rat vas deferens.
    Eisenhofer G; Ropchak TG; Stull RW; Goldstein DS; Keiser HR; Kopin IJ
    J Pharmacol Exp Ther; 1987 May; 241(2):547-53. PubMed ID: 3572811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of monoamine oxidase by moclobemide: effects on monoamine metabolism and secretion of anterior pituitary hormones and cortisol in healthy volunteers.
    Koulu M; Scheinin M; Kaarttinen A; Kallio J; Pyykkö K; Vuorinen J; Zimmer RH
    Br J Clin Pharmacol; 1989 Feb; 27(2):243-55. PubMed ID: 2469451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Source and physiological significance of plasma 3,4-dihydroxyphenylglycol and 3-methoxy-4-hydroxyphenylglycol.
    Eisenhofer G; Goldstein DS; Ropchak TG; Nguyen HQ; Keiser HR; Kopin IJ
    J Auton Nerv Syst; 1988 Sep; 24(1-2):1-14. PubMed ID: 3209794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predominance of oxidative deamination in the metabolism of exogenous noradrenaline by the normal and chemically denervated human uterine artery.
    Branco D; Caramona M; Martel F; de Almeida JA; Osswald W
    Naunyn Schmiedebergs Arch Pharmacol; 1992 Sep; 346(3):286-93. PubMed ID: 1407015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myocardial interstitial norepinephrine and dihydroxyphenylglycol levels during ischemia and reperfusion.
    Akiyama T; Yamazaki T
    Cardiovasc Res; 2001 Jan; 49(1):78-85. PubMed ID: 11121798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal uptake, metabolism, and release of tritium-labeled norepinephrine during assessment of its plasma kinetics.
    Eisenhofer G; Esler MD; Goldstein DS; Kopin IJ
    Am J Physiol; 1991 Oct; 261(4 Pt 1):E505-15. PubMed ID: 1928342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LC-MS/MS method for quantification of 3,4-dihydroxyphenylglycol, a norepinephrine metabolite in plasma and brain regions.
    Padala NSP; Ajjala DR; Boggavarapu RK; Pantangi HR; Thentu JB; Mohammed AR; Nirogi R
    Bioanalysis; 2019 May; 11(10):971-986. PubMed ID: 31218903
    [No Abstract]   [Full Text] [Related]  

  • 19. Aldose reductase, a key enzyme in the oxidative deamination of norepinephrine in rats.
    Kawamura M; Eisenhofer G; Kopin IJ; Kador PF; Lee YS; Tsai JY; Fujisawa S; Lizak MJ; Sinz A; Sato S
    Biochem Pharmacol; 1999 Aug; 58(3):517-24. PubMed ID: 10424772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Norepinephrine and dihydroxyphenylglycol effluxes from sympathetic nerve endings during hypoxia and reoxygenation in the isolated rat heart.
    Chahine R; Nadeau R; Lamontagne D; Yamaguchi N; de Champlain J
    Can J Physiol Pharmacol; 1994 Jun; 72(6):595-601. PubMed ID: 7954091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.