These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 11861417)

  • 1. Spatiotemporal transition to conduction block in canine ventricle.
    Fox JJ; Riccio ML; Hua F; Bodenschatz E; Gilmour RF
    Circ Res; 2002 Feb; 90(3):289-96. PubMed ID: 11861417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Possible mechanism of ECG features in patients with idiopathic ventricular fibrillation studied by heart model and computer simulation.
    Okazaki O; Yamauchi Y; Kashida M; Izumo K; Akatsuka N; Ohnishi S; Shoda M; Nirei T; Kasanuki H; Ebato M; Mashima S; Harumi K; Wei D
    J Electrocardiol; 1998; 30 Suppl():98-104. PubMed ID: 9535486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discordant Alternans as a Mechanism for Initiation of Ventricular Fibrillation In Vitro.
    Muñoz LM; Gelzer ARM; Fenton FH; Qian W; Lin W; Gilmour RF; Otani NF
    J Am Heart Assoc; 2018 Sep; 7(17):e007898. PubMed ID: 30371176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternans and the influence of ionic channel modifications: Cardiac three-dimensional simulations and one-dimensional numerical bifurcation analysis.
    Bauer S; Röder G; Bär M
    Chaos; 2007 Mar; 17(1):015104. PubMed ID: 17411261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of spatiotemporal heterogeneity of cellular restitution in mechanism of arrhythmogenic discordant alternans.
    Pastore JM; Laurita KR; Rosenbaum DS
    Heart Rhythm; 2006 Jun; 3(6):711-9. PubMed ID: 16731476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms linking electrical alternans and clinical ventricular arrhythmia in human heart failure.
    Bayer JD; Lalani GG; Vigmond EJ; Narayan SM; Trayanova NA
    Heart Rhythm; 2016 Sep; 13(9):1922-31. PubMed ID: 27215536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism linking T-wave alternans to the genesis of cardiac fibrillation.
    Pastore JM; Girouard SD; Laurita KR; Akar FG; Rosenbaum DS
    Circulation; 1999 Mar; 99(10):1385-94. PubMed ID: 10077525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of electrical alternans in canine cardiac purkinje fibers.
    Christini DJ; Riccio ML; Culianu CA; Fox JJ; Karma A; Gilmour RF
    Phys Rev Lett; 2006 Mar; 96(10):104101. PubMed ID: 16605736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of control theory to the dynamics and propagation of cardiac action potentials.
    Muñoz LM; Stockton JF; Otani NF
    Ann Biomed Eng; 2010 Sep; 38(9):2865-76. PubMed ID: 20407833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Re-entry--an important mechanism of cardiac arrhythmias.
    Kastor JA; Goldreyer BN; Moore EN; Spear JF
    Cardiovasc Clin; 1974; 6(1):111-35. PubMed ID: 4140023
    [No Abstract]   [Full Text] [Related]  

  • 11. Conduction block in one-dimensional heart fibers.
    Fox JJ; Gilmour RF; Bodenschatz E
    Phys Rev Lett; 2002 Nov; 89(19):198101. PubMed ID: 12443153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency analysis of ventricular fibrillation in Swine ventricles.
    Valderrábano M; Yang J; Omichi C; Kil J; Lamp ST; Qu Z; Lin SF; Karagueuzian HS; Garfinkel A; Chen PS; Weiss JN
    Circ Res; 2002 Feb; 90(2):213-22. PubMed ID: 11834715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amplitude equation approach to spatiotemporal dynamics of cardiac alternans.
    Echebarria B; Karma A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051911. PubMed ID: 18233691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversal of reentry and acceleration due to double-wave reentry: two mechanisms for failure to terminate tachycardias by rapid pacing.
    Frame LH; Rhee EK; Bernstein RC; Fei H
    J Am Coll Cardiol; 1996 Jul; 28(1):137-45. PubMed ID: 8752806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico ischaemia-induced reentry at the Purkinje-ventricle interface.
    Ramirez E; Saiz J; Romero L; Ferrero JM; Trenor B
    Europace; 2014 Mar; 16(3):444-51. PubMed ID: 24569899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How does β-adrenergic signalling affect the transitions from ventricular tachycardia to ventricular fibrillation?
    Xie Y; Grandi E; Bers DM; Sato D
    Europace; 2014 Mar; 16(3):452-7. PubMed ID: 24569900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-septal pacing reduces ventricular electrical remodeling and proarrhythmia in chronic atrioventricular block dogs.
    Winckels SK; Thomsen MB; Oosterhoff P; Oros A; Beekman JD; Attevelt NJ; Kretzers L; Vos MA
    J Am Coll Cardiol; 2007 Aug; 50(9):906-13. PubMed ID: 17719479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of short term memory and conduction velocity restitution in alternans formation.
    Wei N; Mori Y; Tolkacheva EG
    J Theor Biol; 2015 Feb; 367():21-28. PubMed ID: 25435411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purkinje-muscle reentry as a mechanism of polymorphic ventricular arrhythmias in a 3-dimensional model of the ventricles.
    Berenfeld O; Jalife J
    Circ Res; 1998 Jun; 82(10):1063-77. PubMed ID: 9622159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of conduction blocks in a model of paced cardiac tissue.
    Henry H; Rappel WJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 1):051911. PubMed ID: 16089575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.