These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 11861562)

  • 1. The Drosophila inebriated-encoded neurotransmitter/osmolyte transporter: dual roles in the control of neuronal excitability and the osmotic stress response.
    Huang X; Huang Y; Chinnappan R; Bocchini C; Gustin MC; Stern M
    Genetics; 2002 Feb; 160(2):561-9. PubMed ID: 11861562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The putative Na⁺/Cl⁻-dependent neurotransmitter/osmolyte transporter inebriated in the Drosophila hindgut is essential for the maintenance of systemic water homeostasis.
    Luan Z; Quigley C; Li HS
    Sci Rep; 2015 Jan; 5():7993. PubMed ID: 25613130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo properties of the Drosophila inebriated-encoded neurotransmitter transporter.
    Huang Y; Stern M
    J Neurosci; 2002 Mar; 22(5):1698-708. PubMed ID: 11880499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A neurotransmitter transporter encoded by the Drosophila inebriated gene.
    Soehnge H; Huang X; Becker M; Whitley P; Conover D; Stern M
    Proc Natl Acad Sci U S A; 1996 Nov; 93(23):13262-7. PubMed ID: 8917579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of carcinine in signaling at the Drosophila photoreceptor synapse.
    Gavin BA; Arruda SE; Dolph PJ
    PLoS Genet; 2007 Dec; 3(12):e206. PubMed ID: 18069895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Location and functions of Inebriated in the
    Borycz J; Ziegler A; Borycz JA; Uhlenbrock G; Tapken D; Caceres L; Hollmann M; Hovemann BT; Meinertzhagen IA
    Biol Open; 2018 Jul; 7(7):. PubMed ID: 30037884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The glycine neurotransmitter transporter GLYT1 is an organic osmolyte transporter regulating cell volume in cleavage-stage embryos.
    Steeves CL; Hammer MA; Walker GB; Rae D; Stewart NA; Baltz JM
    Proc Natl Acad Sci U S A; 2003 Nov; 100(24):13982-7. PubMed ID: 14615585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional plasticity of the gut and the Malpighian tubules underlies cold acclimation and mitigates cold-induced hyperkalemia in
    Yerushalmi GY; Misyura L; MacMillan HA; Donini A
    J Exp Biol; 2018 Mar; 221(Pt 6):. PubMed ID: 29367271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and characterization of inebriated, a gene affecting neuronal excitability in Drosophila.
    Stern M; Ganetzky B
    J Neurogenet; 1992 Sep; 8(3):157-72. PubMed ID: 1334137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic knockdown of a single organic anion transporter alters the expression of functionally related genes in Malpighian tubules of Drosophila melanogaster.
    Chahine S; Campos A; O'Donnell MJ
    J Exp Biol; 2012 Aug; 215(Pt 15):2601-10. PubMed ID: 22786636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of an animal sucrose transporter.
    Meyer H; Vitavska O; Wieczorek H
    J Cell Sci; 2011 Jun; 124(Pt 12):1984-91. PubMed ID: 21586609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of Drosophila perineurial glial growth by interacting neurotransmitter-mediated signaling pathways.
    Yager J; Richards S; Hekmat-Scafe DS; Hurd DD; Sundaresan V; Caprette DR; Saxton WM; Carlson JR; Stern M
    Proc Natl Acad Sci U S A; 2001 Aug; 98(18):10445-50. PubMed ID: 11517334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional studies of Drosophila zinc transporters reveal the mechanism for zinc excretion in Malpighian tubules.
    Yin S; Qin Q; Zhou B
    BMC Biol; 2017 Feb; 15(1):12. PubMed ID: 28196538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salty dog, an SLC5 symporter, modulates Drosophila response to salt stress.
    Stergiopoulos K; Cabrero P; Davies SA; Dow JA
    Physiol Genomics; 2009 Mar; 37(1):1-11. PubMed ID: 19018044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular Chloride and Scaffold Protein Mo25 Cooperatively Regulate Transepithelial Ion Transport through WNK Signaling in the Malpighian Tubule.
    Sun Q; Wu Y; Jonusaite S; Pleinis JM; Humphreys JM; He H; Schellinger JN; Akella R; Stenesen D; Krämer H; Goldsmith EJ; Rodan AR
    J Am Soc Nephrol; 2018 May; 29(5):1449-1461. PubMed ID: 29602832
    [No Abstract]   [Full Text] [Related]  

  • 16. The septate junction protein Mesh is required for epithelial morphogenesis, ion transport, and paracellular permeability in the
    Jonusaite S; Beyenbach KW; Meyer H; Paululat A; Izumi Y; Furuse M; Rodan AR
    Am J Physiol Cell Physiol; 2020 Mar; 318(3):C675-C694. PubMed ID: 31913700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The osmolyte strategy of normal human keratinocytes in maintaining cell homeostasis.
    Warskulat U; Reinen A; Grether-Beck S; Krutmann J; Häussinger D
    J Invest Dermatol; 2004 Sep; 123(3):516-21. PubMed ID: 15304091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. bloated tubules (blot) encodes a Drosophila member of the neurotransmitter transporter family required for organisation of the apical cytocortex.
    Johnson K; Knust E; Skaer H
    Dev Biol; 1999 Aug; 212(2):440-54. PubMed ID: 10433833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of intracellular glycine as an organic osmolyte in early preimplantation mouse embryos.
    Steeves CL; Baltz JM
    J Cell Physiol; 2005 Jul; 204(1):273-9. PubMed ID: 15672418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The corticotropin-releasing factor-like diuretic hormone 44 (DH44) and kinin neuropeptides modulate desiccation and starvation tolerance in Drosophila melanogaster.
    Cannell E; Dornan AJ; Halberg KA; Terhzaz S; Dow JAT; Davies SA
    Peptides; 2016 Jun; 80():96-107. PubMed ID: 26896569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.