BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 11861642)

  • 21. Cysteine residues exposed on protein surfaces are the dominant intramitochondrial thiol and may protect against oxidative damage.
    Requejo R; Hurd TR; Costa NJ; Murphy MP
    FEBS J; 2010 Mar; 277(6):1465-80. PubMed ID: 20148960
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prevention of mitochondrial oxidative damage using targeted antioxidants.
    Kelso GF; Porteous CM; Hughes G; Ledgerwood EC; Gane AM; Smith RA; Murphy MP
    Ann N Y Acad Sci; 2002 Apr; 959():263-74. PubMed ID: 11976201
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modulation of the specific glutathionylation of mitochondrial proteins in the yeast
    Gergondey R; Garcia C; Marchand CH; Lemaire SD; Camadro JM; Auchère F
    Biochem J; 2017 Mar; 474(7):1175-1193. PubMed ID: 28167699
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidative stress, thiols, and redox profiles.
    Harris C; Hansen JM
    Methods Mol Biol; 2012; 889():325-46. PubMed ID: 22669675
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thiol-disulfide redox proteomics in plant research.
    Muthuramalingam M; Dietz KJ; Ströher E
    Methods Mol Biol; 2010; 639():219-38. PubMed ID: 20387049
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mass Spectrometry-Based Quantitative Cysteine Redox Proteome Profiling of Isolated Mitochondria Using Differential iodoTMT Labeling.
    Giese J; Eirich J; Post F; Schwarzländer M; Finkemeier I
    Methods Mol Biol; 2022; 2363():215-234. PubMed ID: 34545496
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection and mapping of widespread intermolecular protein disulfide formation during cardiac oxidative stress using proteomics with diagonal electrophoresis.
    Brennan JP; Wait R; Begum S; Bell JR; Dunn MJ; Eaton P
    J Biol Chem; 2004 Oct; 279(40):41352-60. PubMed ID: 15292244
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Saccharomyces cerevisiae proteome of oxidized protein thiols: contrasted functions for the thioredoxin and glutathione pathways.
    Le Moan N; Clement G; Le Maout S; Tacnet F; Toledano MB
    J Biol Chem; 2006 Apr; 281(15):10420-30. PubMed ID: 16418165
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation.
    Dröse S; Brandt U; Wittig I
    Biochim Biophys Acta; 2014 Aug; 1844(8):1344-54. PubMed ID: 24561273
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantification and identification of mitochondrial proteins containing vicinal dithiols.
    Requejo R; Chouchani ET; James AM; Prime TA; Lilley KS; Fearnley IM; Murphy MP
    Arch Biochem Biophys; 2010 Dec; 504(2):228-35. PubMed ID: 20836988
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of intra- and intermolecular disulphide bonding in the plant mitochondrial proteome by diagonal gel electrophoresis.
    Winger AM; Taylor NL; Heazlewood JL; Day DA; Millar AH
    Proteomics; 2007 Nov; 7(22):4158-70. PubMed ID: 17994621
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mitochondria-targeted redox probes as tools in the study of oxidative damage and ageing.
    James AM; Cochemé HM; Murphy MP
    Mech Ageing Dev; 2005 Sep; 126(9):982-6. PubMed ID: 15923020
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis and characterization of a triphenylphosphonium-conjugated peroxidase mimetic. Insights into the interaction of ebselen with mitochondria.
    Filipovska A; Kelso GF; Brown SE; Beer SM; Smith RA; Murphy MP
    J Biol Chem; 2005 Jun; 280(25):24113-26. PubMed ID: 15831495
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Redox Equivalents and Mitochondrial Bioenergetics.
    Roede JR; Go YM; Jones DP
    Methods Mol Biol; 2018; 1782():197-227. PubMed ID: 29851002
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of mitochondrial and extra-mitochondrial oxygen consuming reactions in human hematopoietic stem cells. Novel evidence of the occurrence of NAD(P)H oxidase activity.
    Piccoli C; Ria R; Scrima R; Cela O; D'Aprile A; Boffoli D; Falzetti F; Tabilio A; Capitanio N
    J Biol Chem; 2005 Jul; 280(28):26467-76. PubMed ID: 15883163
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in mitochondrial glutathione levels and protein thiol oxidation in ∆yfh1 yeast cells and the lymphoblasts of patients with Friedreich's ataxia.
    Bulteau AL; Planamente S; Jornea L; Dur A; Lesuisse E; Camadro JM; Auchère F
    Biochim Biophys Acta; 2012 Feb; 1822(2):212-25. PubMed ID: 22200491
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Redox regulation of apoptosis: impact of thiol oxidation status on mitochondrial function.
    Marchetti P; Decaudin D; Macho A; Zamzami N; Hirsch T; Susin SA; Kroemer G
    Eur J Immunol; 1997 Jan; 27(1):289-96. PubMed ID: 9022031
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease.
    Muratovska A; Lightowlers RN; Taylor RW; Turnbull DM; Smith RA; Wilce JA; Martin SW; Murphy MP
    Nucleic Acids Res; 2001 May; 29(9):1852-63. PubMed ID: 11328868
    [TBL] [Abstract][Full Text] [Related]  

  • 39. S-D-Lactoylglutathione can be an alternative supply of mitochondrial glutathione.
    Armeni T; Cianfruglia L; Piva F; Urbanelli L; Luisa Caniglia M; Pugnaloni A; Principato G
    Free Radic Biol Med; 2014 Feb; 67():451-9. PubMed ID: 24333633
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulatory control of human cytosolic branched-chain aminotransferase by oxidation and S-glutathionylation and its interactions with redox sensitive neuronal proteins.
    Conway ME; Coles SJ; Islam MM; Hutson SM
    Biochemistry; 2008 May; 47(19):5465-79. PubMed ID: 18419134
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.