These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 11862986)
21. Food adulteration analysis without laboratory prepared or determined reference food adulterant values. Kalivas JH; Georgiou CA; Moira M; Tsafaras I; Petrakis EA; Mousdis GA Food Chem; 2014 Apr; 148():289-93. PubMed ID: 24262559 [TBL] [Abstract][Full Text] [Related]
22. Authentication of extra virgin Argan oil by selected-ion flow-tube mass-spectrometry fingerprinting and chemometrics. Kharbach M; Yu H; Kamal R; Marmouzi I; Alaoui K; Vercammen J; Bouklouze A; Vander Heyden Y Food Chem; 2022 Jul; 383():132565. PubMed ID: 35245834 [TBL] [Abstract][Full Text] [Related]
23. Rapid authentication of olive oil adulteration by Raman spectrometry. Zou MQ; Zhang XF; Qi XH; Ma HL; Dong Y; Liu CW; Guo X; Wang H J Agric Food Chem; 2009 Jul; 57(14):6001-6. PubMed ID: 19537730 [TBL] [Abstract][Full Text] [Related]
24. Non-thermal plasma as preparative technique to evaluate olive oil adulteration. Van Durme J; Vandamme J Food Chem; 2016 Oct; 208():185-91. PubMed ID: 27132839 [TBL] [Abstract][Full Text] [Related]
25. Putative Markers of Adulteration of Higher-Grade Olive Oil with Less Expensive Pomace Olive Oil Identified by Gas Chromatography Combined with Chemometrics. Jabeur H; Drira M; Rebai A; Bouaziz M J Agric Food Chem; 2017 Jul; 65(26):5375-5383. PubMed ID: 28609617 [TBL] [Abstract][Full Text] [Related]
26. Detection of extra virgin olive oil adulteration with lampante olive oil and refined olive oil using nuclear magnetic resonance spectroscopy and multivariate statistical analysis. Fragaki G; Spyros A; Siragakis G; Salivaras E; Dais P J Agric Food Chem; 2005 Apr; 53(8):2810-6. PubMed ID: 15826023 [TBL] [Abstract][Full Text] [Related]
28. Application of data mining methods for classification and prediction of olive oil blends with other vegetable oils. Ruiz-Samblás C; Cadenas JM; Pelta DA; Cuadros-Rodríguez L Anal Bioanal Chem; 2014 Apr; 406(11):2591-601. PubMed ID: 24577575 [TBL] [Abstract][Full Text] [Related]
29. Multispecies Adulteration Detection of Camellia Oil by Chemical Markers. Dou X; Mao J; Zhang L; Xie H; Chen L; Yu L; Ma F; Wang X; Zhang Q; Li P Molecules; 2018 Jan; 23(2):. PubMed ID: 29370131 [TBL] [Abstract][Full Text] [Related]
30. Characterization of vegetable oils: detailed compositional fingerprints derived from electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Wu Z; Rodgers RP; Marshall AG J Agric Food Chem; 2004 Aug; 52(17):5322-8. PubMed ID: 15315364 [TBL] [Abstract][Full Text] [Related]
31. Synchronous fluorescence spectroscopy for quantitative determination of virgin olive oil adulteration with sunflower oil. Poulli KI; Mousdis GA; Georgiou CA Anal Bioanal Chem; 2006 Nov; 386(5):1571-5. PubMed ID: 16953317 [TBL] [Abstract][Full Text] [Related]
32. Application of solid-phase microextraction to the analysis of volatile compounds in virgin olive oils. Jiménez A; Beltrán G; Aguilera MP J Chromatogr A; 2004 Mar; 1028(2):321-4. PubMed ID: 15002398 [TBL] [Abstract][Full Text] [Related]
33. Rapid determination of BTEXS in olives and olive oil by headspace-gas chromatography/mass spectrometry (HS-GC-MS). Gilbert-López B; Robles-Molina J; García-Reyes JF; Molina-Díaz A Talanta; 2010 Dec; 83(2):391-9. PubMed ID: 21111151 [TBL] [Abstract][Full Text] [Related]
34. Building robust models for identification of adulteration in olive oil using FT-NIR, PLS-DA and variable selection. Vieira LS; Assis C; de Queiroz MELR; Neves AA; de Oliveira AF Food Chem; 2021 May; 345():128866. PubMed ID: 33348130 [TBL] [Abstract][Full Text] [Related]
35. Ambient mass spectrometry employing direct analysis in real time (DART) ion source for olive oil quality and authenticity assessment. Vaclavik L; Cajka T; Hrbek V; Hajslova J Anal Chim Acta; 2009 Jul; 645(1-2):56-63. PubMed ID: 19481631 [TBL] [Abstract][Full Text] [Related]
36. An Affordable NIR Spectroscopic System for Fraud Detection in Olive Oil. Melendreras C; Soldado A; Costa-Fernández JM; López A; Valledor M; Campo JC; Ferrero F Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772764 [TBL] [Abstract][Full Text] [Related]
37. Single-laboratory validation of a GC/MS method for the determination of 27 polycyclic aromatic hydrocarbons (PAHs) in oils and fats. Rose M; White S; Macarthur R; Petch RG; Holland J; Damant AP Food Addit Contam; 2007 Jun; 24(6):635-51. PubMed ID: 17487605 [TBL] [Abstract][Full Text] [Related]
38. Post-heating Fluorescence-based Alteration and Adulteration Detection of Extra Virgin Olive Oil. Hamdy O; Mohammed HS J Fluoresc; 2023 Jul; 33(4):1631-1639. PubMed ID: 36808529 [TBL] [Abstract][Full Text] [Related]
39. Simultaneous determination of volatile and semi-volatile aromatic hydrocarbons in virgin olive oil by headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry. Vichi S; Pizzale L; Conte LS; Buxaderas S; López-Tamames E J Chromatogr A; 2005 Oct; 1090(1-2):146-54. PubMed ID: 16196143 [TBL] [Abstract][Full Text] [Related]
40. A classification and identification model of extra virgin olive oil adulterated with other edible oils based on pigment compositions and support vector machine. Lu CH; Li BQ; Jing Q; Pei D; Huang XY Food Chem; 2023 Sep; 420():136161. PubMed ID: 37080110 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]