These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 11863160)

  • 1. Frequency-to-electrode allocation and speech perception with cochlear implants.
    McKay CM; Henshall KR
    J Acoust Soc Am; 2002 Feb; 111(2):1036-44. PubMed ID: 11863160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrode discrimination and speech recognition in postlingually deafened adult cochlear implant subjects.
    Zwolan TA; Collins LM; Wakefield GH
    J Acoust Soc Am; 1997 Dec; 102(6):3673-85. PubMed ID: 9407659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing frequency-to-electrode allocation in cochlear implants.
    Leigh JR; Henshall KR; McKay CM
    J Am Acad Audiol; 2004 Sep; 15(8):574-84. PubMed ID: 15553657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrocochleography-Based Tonotopic Map: II. Frequency-to-Place Mismatch Impacts Speech-Perception Outcomes in Cochlear Implant Recipients.
    Walia A; Shew MA; Varghese J; Lefler SM; Bhat A; Ortmann AJ; Herzog JA; Buchman CA
    Ear Hear; 2024 Nov-Dec 01; 45(6):1406-1417. PubMed ID: 38880958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of frequency allocation on phoneme recognition with the nucleus 22 cochlear implant.
    Friesen LM; Shannon RV; Slattery WH
    Am J Otol; 1999 Nov; 20(6):729-34. PubMed ID: 10565716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing electrode and filter selection in cochlear implant speech processor maps.
    Henshall KR; McKay CM
    J Am Acad Audiol; 2001 Oct; 12(9):478-89. PubMed ID: 11699819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fitting prelingually deafened adult cochlear implant users based on electrode discrimination performance.
    Debruyne JA; Francart T; Janssen AM; Douma K; Brokx JP
    Int J Audiol; 2017 Mar; 56(3):174-185. PubMed ID: 27758152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of electrode location and spacing on phoneme recognition with the Nucleus-22 cochlear implant.
    Fu QJ; Shannon RV
    Ear Hear; 1999 Aug; 20(4):321-31. PubMed ID: 10466568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pitch adaptation patterns in bimodal cochlear implant users: over time and after experience.
    Reiss LA; Ito RA; Eggleston JL; Liao S; Becker JJ; Lakin CE; Warren FM; McMenomey SO
    Ear Hear; 2015; 36(2):e23-34. PubMed ID: 25319401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speech recognition as a function of the number of electrodes used in the SPEAK cochlear implant speech processor.
    Fishman KE; Shannon RV; Slattery WH
    J Speech Lang Hear Res; 1997 Oct; 40(5):1201-15. PubMed ID: 9328890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Threshold Adjustment on Speech Perception in Nucleus Cochlear Implant Recipients.
    Busby PA; Arora K
    Ear Hear; 2016; 37(3):303-11. PubMed ID: 26671316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of ECAP-based choice of stimulation rate on speech-perception performance.
    Bournique JL; Hughes ML; Baudhuin JL; Goehring JL
    Ear Hear; 2013; 34(4):437-46. PubMed ID: 23303197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association Between Flat-Panel Computed Tomographic Imaging-Guided Place-Pitch Mapping and Speech and Pitch Perception in Cochlear Implant Users.
    Jiam NT; Gilbert M; Cooke D; Jiradejvong P; Barrett K; Caldwell M; Limb CJ
    JAMA Otolaryngol Head Neck Surg; 2019 Feb; 145(2):109-116. PubMed ID: 30477013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the electrode location on tonal discrimination and speech perception of Mandarin-speaking patients with a cochlear implant.
    Lee FP; Hsu HT; Lin YS; Hung SC
    Laryngoscope; 2012 Jun; 122(6):1366-78. PubMed ID: 22569966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of electrode deactivation on speech recognition in multichannel cochlear implant recipients.
    Schvartz-Leyzac KC; Zwolan TA; Pfingst BE
    Cochlear Implants Int; 2017 Nov; 18(6):324-334. PubMed ID: 28793847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perceptual learning following changes in the frequency-to-electrode assignment with the Nucleus-22 cochlear implant.
    Fu QJ; Shannon RV; Galvin JJ
    J Acoust Soc Am; 2002 Oct; 112(4):1664-74. PubMed ID: 12398471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of stimulation rate on cochlear implant users' phoneme, word and sentence recognition in quiet and in noise.
    Shannon RV; Cruz RJ; Galvin JJ
    Audiol Neurootol; 2011; 16(2):113-23. PubMed ID: 20639631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing frequency-to-electrode allocation for individual cochlear implant users.
    Grasmeder ML; Verschuur CA; Batty VB
    J Acoust Soc Am; 2014 Dec; 136(6):3313. PubMed ID: 25480076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cochlear implantation with the nucleus slim straight electrode in subjects with residual low-frequency hearing.
    Skarzynski H; Lorens A; Matusiak M; Porowski M; Skarzynski PH; James CJ
    Ear Hear; 2014; 35(2):e33-43. PubMed ID: 24556970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship between speech perception and electrode discrimination in cochlear implantees.
    Henry BA; McKay CM; McDermott HJ; Clark GM
    J Acoust Soc Am; 2000 Sep; 108(3 Pt 1):1269-80. PubMed ID: 11008827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.