BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 11863371)

  • 21. Mobile element scanning (ME-Scan) identifies thousands of novel Alu insertions in diverse human populations.
    Witherspoon DJ; Zhang Y; Xing J; Watkins WS; Ha H; Batzer MA; Jorde LB
    Genome Res; 2013 Jul; 23(7):1170-81. PubMed ID: 23599355
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mobile element biology: new possibilities with high-throughput sequencing.
    Xing J; Witherspoon DJ; Jorde LB
    Trends Genet; 2013 May; 29(5):280-9. PubMed ID: 23312846
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reading TE leaves: new approaches to the identification of transposable element insertions.
    Ray DA; Batzer MA
    Genome Res; 2011 Jun; 21(6):813-20. PubMed ID: 21632748
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RISCI--Repeat Induced Sequence Changes Identifier: a comprehensive, comparative genomics-based, in silico subtractive hybridization pipeline to identify repeat induced sequence changes in closely related genomes.
    Singh V; Mishra RK
    BMC Bioinformatics; 2010 Dec; 11():609. PubMed ID: 21184688
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Endogenous retroviruses and human evolution.
    Khodosevich K; Lebedev Y; Sverdlov E
    Comp Funct Genomics; 2002; 3(6):494-8. PubMed ID: 18629260
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microarray-based global mapping of integration sites for the retrotransposon, intracisternal A-particle, in the mouse genome.
    Takabatake T; Ishihara H; Ohmachi Y; Tanaka I; Nakamura MM; Fujikawa K; Hirouchi T; Kakinuma S; Shimada Y; Oghiso Y; Tanaka K
    Nucleic Acids Res; 2008 Jun; 36(10):e59. PubMed ID: 18450814
    [TBL] [Abstract][Full Text] [Related]  

  • 27. At least 50% of human-specific HERV-K (HML-2) long terminal repeats serve in vivo as active promoters for host nonrepetitive DNA transcription.
    Buzdin A; Kovalskaya-Alexandrova E; Gogvadze E; Sverdlov E
    J Virol; 2006 Nov; 80(21):10752-62. PubMed ID: 17041225
    [TBL] [Abstract][Full Text] [Related]  

  • 28. GREM, a technique for genome-wide isolation and quantitative analysis of promoter active repeats.
    Buzdin A; Kovalskaya-Alexandrova E; Gogvadze E; Sverdlov E
    Nucleic Acids Res; 2006 May; 34(9):e67. PubMed ID: 16698959
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Allelic variation of HERV-K(HML-2) endogenous retroviral elements in human populations.
    Macfarlane C; Simmonds P
    J Mol Evol; 2004 Nov; 59(5):642-56. PubMed ID: 15693620
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Whole-genome experimental identification of insertion/deletion polymorphisms of interspersed repeats by a new general approach.
    Mamedov IZ; Arzumanyan ES; Amosova AL; Lebedev YB; Sverdlov ED
    Nucleic Acids Res; 2005 Jan; 33(2):e16. PubMed ID: 15673711
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Large-scale determination of the methylation status of retrotransposons in different tissues using a methylation tags approach.
    Khodosevich K; Lebedev Y; Sverdlov ED
    Nucleic Acids Res; 2004 Feb; 32(3):e31. PubMed ID: 14973327
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ATLAS: a system to selectively identify human-specific L1 insertions.
    Badge RM; Alisch RS; Moran JV
    Am J Hum Genet; 2003 Apr; 72(4):823-38. PubMed ID: 12632328
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome-wide targeted search for human specific and polymorphic L1 integrations.
    Buzdin A; Ustyugova S; Gogvadze E; Lebedev Y; Hunsmann G; Sverdlov E
    Hum Genet; 2003 May; 112(5-6):527-33. PubMed ID: 12601470
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-wide comparison of differences in the integration sites of interspersed repeats between closely related genomes.
    Mamedov I; Batrak A; Buzdin A; Arzumanyan E; Lebedev Y; Sverdlov ED
    Nucleic Acids Res; 2002 Jul; 30(14):e71. PubMed ID: 12136119
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A technique for genome-wide identification of differences in the interspersed repeats integrations between closely related genomes and its application to detection of human-specific integrations of HERV-K LTRs.
    Buzdin A; Khodosevich K; Mamedov I; Vinogradova T; Lebedev Y; Hunsmann G; Sverdlov E
    Genomics; 2002 Mar; 79(3):413-22. PubMed ID: 11863371
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A rare event of insertion polymorphism of a HERV-K LTR in the human genome.
    Mamedov I; Lebedev Y; Hunsmann G; Khusnutdinova E; Sverdlov E
    Genomics; 2004 Sep; 84(3):596-9. PubMed ID: 15498467
    [TBL] [Abstract][Full Text] [Related]  

  • 37. HERV-K-T47D-Related long terminal repeats mediate polyadenylation of cellular transcripts.
    Baust C; Seifarth W; Germaier H; Hehlmann R; Leib-Mösch C
    Genomics; 2000 May; 66(1):98-103. PubMed ID: 10843810
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional activity of HERV-K-T47D-related long terminal repeats.
    Baust C; Seifarth W; Schön U; Hehlmann R; Leib-Mösch C
    Virology; 2001 May; 283(2):262-72. PubMed ID: 11336551
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Retroviruses and primate evolution.
    Sverdlov ED
    Bioessays; 2000 Feb; 22(2):161-71. PubMed ID: 10655035
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of human endogenous retroviral long terminal repeat sequences in human cancer (Review).
    Yu HL; Zhao ZK; Zhu F
    Int J Mol Med; 2013 Oct; 32(4):755-62. PubMed ID: 23900638
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.