These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 11863441)

  • 1. Site-directed rotational resonance solid-state NMR distance measurements probe structure and mechanism in the transmembrane domain of the serine bacterial chemoreceptor.
    Isaac B; Gallagher GJ; Balazs YS; Thompson LK
    Biochemistry; 2002 Mar; 41(9):3025-36. PubMed ID: 11863441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-directed solid-state NMR measurement of a ligand-induced conformational change in the serine bacterial chemoreceptor.
    Murphy OJ; Kovacs FA; Sicard EL; Thompson LK
    Biochemistry; 2001 Feb; 40(5):1358-66. PubMed ID: 11170463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid-state REDOR NMR distance measurements at the ligand site of a bacterial chemotaxis membrane receptor.
    Wang J; Balazs YS; Thompson LK
    Biochemistry; 1997 Feb; 36(7):1699-703. PubMed ID: 9048553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Side chains at the membrane-water interface modulate the signaling state of a transmembrane receptor.
    Miller AS; Falke JJ
    Biochemistry; 2004 Feb; 43(7):1763-70. PubMed ID: 14967017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 13C-13C rotational resonance in a transmembrane peptide: a comparison of the fluid and gel phases.
    Langlais DB; Hodges RS; Davis JH
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):5945-57. PubMed ID: 11969576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that the adaptation region of the aspartate receptor is a dynamic four-helix bundle: cysteine and disulfide scanning studies.
    Winston SE; Mehan R; Falke JJ
    Biochemistry; 2005 Sep; 44(38):12655-66. PubMed ID: 16171380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model for transmembrane signalling by the aspartate receptor based on random-cassette mutagenesis and site-directed disulfide cross-linking.
    Maruyama IN; Mikawa YG; Maruyama HI
    J Mol Biol; 1995 Nov; 253(4):530-46. PubMed ID: 7473732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct measurement of small ligand-induced conformational changes in the aspartate chemoreceptor using EPR.
    Ottemann KM; Thorgeirsson TE; Kolodziej AF; Shin YK; Koshland DE
    Biochemistry; 1998 May; 37(20):7062-9. PubMed ID: 9585515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signaling domain of the aspartate receptor is a helical hairpin with a localized kinase docking surface: cysteine and disulfide scanning studies.
    Bass RB; Coleman MD; Falke JJ
    Biochemistry; 1999 Jul; 38(29):9317-27. PubMed ID: 10413506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmembrane signalling and the aspartate receptor.
    Scott WG; Stoddard BL
    Structure; 1994 Sep; 2(9):877-87. PubMed ID: 7812719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The three-dimensional structure of the ligand-binding domain of a wild-type bacterial chemotaxis receptor. Structural comparison to the cross-linked mutant forms and conformational changes upon ligand binding.
    Yeh JI; Biemann HP; Pandit J; Koshland DE; Kim SH
    J Biol Chem; 1993 May; 268(13):9787-92. PubMed ID: 8486661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmembrane interactions in the activation of the Neu receptor tyrosine kinase.
    Smith SO; Smith C; Shekar S; Peersen O; Ziliox M; Aimoto S
    Biochemistry; 2002 Jul; 41(30):9321-32. PubMed ID: 12135353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmembrane signaling by the aspartate receptor: engineered disulfides reveal static regions of the subunit interface.
    Chervitz SA; Lin CM; Falke JJ
    Biochemistry; 1995 Aug; 34(30):9722-33. PubMed ID: 7626643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conserved glycine residues in the cytoplasmic domain of the aspartate receptor play essential roles in kinase coupling and on-off switching.
    Coleman MD; Bass RB; Mehan RS; Falke JJ
    Biochemistry; 2005 May; 44(21):7687-95. PubMed ID: 15909983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the transmembrane domain of bacterial chemoreceptors.
    Peach ML; Hazelbauer GL; Lybrand TP
    Protein Sci; 2002 Apr; 11(4):912-23. PubMed ID: 11910034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Trigger Residue for Transmembrane Signaling in the Escherichia coli Serine Chemoreceptor.
    Kitanovic S; Ames P; Parkinson JS
    J Bacteriol; 2015 Aug; 197(15):2568-79. PubMed ID: 26013490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic aspect of bacteriorhodopsin as a typical membrane protein as revealed by site-directed solid-state 13C NMR.
    Saitô H; Yamaguchi S; Okuda H; Shiraishi A; Tuzi S
    Solid State Nucl Magn Reson; 2004 Jan; 25(1-3):5-14. PubMed ID: 14698378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A single hydrophobic to hydrophobic substitution in the transmembrane domain impairs aspartate receptor function.
    Jeffery CJ; Koshland DE
    Biochemistry; 1994 Mar; 33(12):3457-63. PubMed ID: 8142342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tryptophan residues flanking the second transmembrane helix (TM2) set the signaling state of the Tar chemoreceptor.
    Draheim RR; Bormans AF; Lai RZ; Manson MD
    Biochemistry; 2005 Feb; 44(4):1268-77. PubMed ID: 15667220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lock on/off disulfides identify the transmembrane signaling helix of the aspartate receptor.
    Chervitz SA; Falke JJ
    J Biol Chem; 1995 Oct; 270(41):24043-53. PubMed ID: 7592603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.