These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 11863518)

  • 1. Lane formation in colloidal mixtures driven by an external field.
    Dzubiella J; Hoffmann GP; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021402. PubMed ID: 11863518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reentrance effect in the lane formation of driven colloids.
    Chakrabarti J; Dzubiella J; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jul; 70(1 Pt 1):012401. PubMed ID: 15324099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lane formation in oppositely charged colloids driven by an electric field: chaining and two-dimensional crystallization.
    Rex M; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051402. PubMed ID: 17677060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of hydrodynamic interactions in binary colloidal mixtures driven oppositely by oscillatory external fields.
    Wysocki A; Löwen H
    J Phys Condens Matter; 2011 Jul; 23(28):284117. PubMed ID: 21709336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oscillatory driven colloidal binary mixtures: axial segregation versus laning.
    Wysocki A; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041408. PubMed ID: 19518234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Should "lane formation" occur systematically in driven liquids and colloids?
    Delhommelle J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016705. PubMed ID: 15697762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reentrant melting of lanes of rough circular disks.
    Samsuzzaman M; Sayeed A; Saha A
    Phys Rev E; 2022 Feb; 105(2-1):024608. PubMed ID: 35291112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscopic origin and macroscopic implications of lane formation in mixtures of oppositely driven particles.
    Klymko K; Geissler PL; Whitelam S
    Phys Rev E; 2016 Aug; 94(2-1):022608. PubMed ID: 27627361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lane formation of colloidal particles driven in parallel by gravity.
    Isele M; Hofmann K; Erbe A; Leiderer P; Nielaba P
    Phys Rev E; 2023 Sep; 108(3-1):034607. PubMed ID: 37849083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nature of the laning transition in two dimensions.
    Glanz T; Löwen H
    J Phys Condens Matter; 2012 Nov; 24(46):464114. PubMed ID: 23114095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase Transitions of Oppositely Charged Colloidal Particles Driven by Alternating Current Electric Field.
    Li B; Wang YL; Shi G; Gao Y; Shi X; Woodward CE; Forsman J
    ACS Nano; 2021 Feb; 15(2):2363-2373. PubMed ID: 33576616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lane formation in gravitationally driven colloid mixtures consisting of up to three different particle sizes.
    Hofmann K; Isele M; Erbe A; Leiderer P; Nielaba P
    Phys Rev E; 2024 Jun; 109(6-1):064601. PubMed ID: 39020999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of hydrodynamic interactions on lane formation in oppositely charged driven colloids.
    Rex M; Löwen H
    Eur Phys J E Soft Matter; 2008; 26(1-2):143-50. PubMed ID: 18324352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonequilibrium pattern formation in strongly interacting driven colloids.
    Löwen H; Dzubiella J
    Faraday Discuss; 2003; 123():99-105; discussion 173-92, 419-21. PubMed ID: 12638856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer simulations of colloidal transport on a patterned magnetic substrate.
    Fortini A; Schmidt M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041411. PubMed ID: 21599162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonequilibrium condensation and coarsening of field-driven dipolar colloids.
    Jäger S; Schmidle H; Klapp SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011402. PubMed ID: 23005412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clustering and Phase Separation in Mixtures of Dipolar and Active Particles in an External Field.
    Maloney RC; Hall CK
    Langmuir; 2020 Jun; 36(23):6378-6387. PubMed ID: 32418424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonequilibrium structure of colloidal dumbbells under oscillatory shear.
    Heptner N; Chu F; Lu Y; Lindner P; Ballauff M; Dzubiella J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052311. PubMed ID: 26651699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic behavior of the interface of striplike structures in driven lattice gases.
    Saracco GP; Albano EV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031132. PubMed ID: 18851018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rheological properties and particle behaviors of a nondilute colloidal dispersion composed of ferromagnetic spherocylinder particles subjected to a simple shear flow: analysis by means of mean-field approximation for the two typical external magnetic field directions.
    Watanabe T; Aoshima M; Satoh A
    J Colloid Interface Sci; 2006 Oct; 302(1):347-55. PubMed ID: 16814313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.