BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 11863565)

  • 21. Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media.
    Ntziachristos V; Weissleder R
    Med Phys; 2002 May; 29(5):803-9. PubMed ID: 12033576
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Angular distribution of diffuse reflectance from incoherent multiple scattering in turbid media.
    Gao M; Huang X; Yang P; Kattawar GW
    Appl Opt; 2013 Aug; 52(24):5869-79. PubMed ID: 24084986
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of optical properties of turbid media using pulsed photothermal radiometry.
    Prahl SA; Vitkin IA; Bruggemann U; Wilson BC; Anderson RR
    Phys Med Biol; 1992 Jun; 37(6):1203-17. PubMed ID: 1626021
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Source of error in calculation of optical diffuse reflectance from turbid media using diffusion theory.
    Wang LV; Jacques SL
    Comput Methods Programs Biomed; 2000 Mar; 61(3):163-70. PubMed ID: 10710179
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Propagation of polarized light in birefringent turbid media: a Monte Carlo study.
    Wang X; Wang LV
    J Biomed Opt; 2002 Jul; 7(3):279-90. PubMed ID: 12175276
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diffuse photon density wave measurements and Monte Carlo simulations.
    Kuzmin VL; Neidrauer MT; Diaz D; Zubkov LA
    J Biomed Opt; 2015 Oct; 20(10):105006. PubMed ID: 26465614
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer.
    Klose AD; Hielscher AH
    Med Phys; 1999 Aug; 26(8):1698-707. PubMed ID: 10501069
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robust multiparameter method of evaluating the optical and thermal properties of a layered tissue structure using photothermal radiometry.
    Matvienko A; Mandelis A; Abrams S
    Appl Opt; 2009 Jun; 48(17):3192-203. PubMed ID: 19516364
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection of heterogeneities embedded within a turbid slab media using time- and frequency-domain methods: application to the mammography.
    Piron V; L'Huillier JP
    Lasers Med Sci; 2006 Jul; 21(2):67-73. PubMed ID: 16596457
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sampling tissue volumes using frequency-domain photon migration.
    Bevilacqua F; You JS; Hayakawa CK; Venugopalan V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 1):051908. PubMed ID: 15244848
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Green functions for diffuse light in a medium comprising two turbid half-spaces.
    Shendeleva ML
    Appl Opt; 2004 Oct; 43(28):5334-42. PubMed ID: 15495424
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of higher-order time-domain perturbation theory of photon diffusion on breast-equivalent phantoms and optical mammograms.
    Grosenick D; Kummrow A; Macdonald R; Schlag PM; Rinneberg H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061908. PubMed ID: 18233870
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Frequency domain photothermoacoustic signal amplitude dependence on the optical properties of water: turbid polyvinyl chloride-plastisol system.
    Spirou GM; Mandelis A; Vitkin IA; Whelan WM
    Appl Opt; 2008 May; 47(14):2564-73. PubMed ID: 18470251
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effective infrared absorption coefficient for photothermal radiometric measurements in biological tissues.
    Majaron B; Milanic M
    Phys Med Biol; 2008 Jan; 53(1):255-68. PubMed ID: 18182701
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nonperturbative retrieval of the scattering strength in one-dimensional media.
    Lamb KD; Menon S; Su Q; Grobe R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):061903. PubMed ID: 17280092
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Model for photon migration in turbid biological media.
    Bonner RF; Nossal R; Havlin S; Weiss GH
    J Opt Soc Am A; 1987 Mar; 4(3):423-32. PubMed ID: 3572576
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of the picosecond magneto-optical phenomena in scattering media of biological interest.
    Munin E; Longo VR; Villaverde AB; Pacheco MT
    Phys Med Biol; 2002 May; 47(9):1519-34. PubMed ID: 12043817
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Near- and far-field evolution of laser pulse filaments in Kerr media.
    Faccio D; Matijosius A; Dubietis A; Piskarskas R; Varanavicius A; Gaizauskas E; Piskarskas A; Couairon A; Di Trapani P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):037601. PubMed ID: 16241627
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Practical improvements on photon diffusion theory: application to isotropic scattering.
    Graaff R; Rinzema K
    Phys Med Biol; 2001 Nov; 46(11):3043-50. PubMed ID: 11720362
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiple scattering of polarized light: comparison of Maxwell theory and radiative transfer theory.
    Voit F; Hohmann A; Schäfer J; Kienle A
    J Biomed Opt; 2012 Apr; 17(4):045003. PubMed ID: 22559677
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.