These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 11863598)
1. Functional integral approach: a third formulation of quantum statistical mechanics. Dai XX; Evenson WE Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026118. PubMed ID: 11863598 [TBL] [Abstract][Full Text] [Related]
2. A reductionist perspective on quantum statistical mechanics: Coarse-graining of path integrals. Sinitskiy AV; Voth GA J Chem Phys; 2015 Sep; 143(9):094104. PubMed ID: 26342356 [TBL] [Abstract][Full Text] [Related]
4. Analogy between Boltzmann Machines and Feynman Path Integrals. Iyengar SS; Kais S J Chem Theory Comput; 2023 May; 19(9):2446-2454. PubMed ID: 37099405 [TBL] [Abstract][Full Text] [Related]
5. Fractional quantum mechanics. Laskin N Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt A):3135-45. PubMed ID: 11088808 [TBL] [Abstract][Full Text] [Related]
6. Path integrals for electronic densities, reactivity indices, and localization functions in quantum systems. Putz MV Int J Mol Sci; 2009 Nov; 10(11):4816-4940. PubMed ID: 20087467 [TBL] [Abstract][Full Text] [Related]
7. Worlds apart in chemistry: a personal tribute to J. C. Slater. Bader RF J Phys Chem A; 2011 Nov; 115(45):12667-76. PubMed ID: 21766823 [TBL] [Abstract][Full Text] [Related]
8. Fractals and quantum mechanics. Laskin N Chaos; 2000 Dec; 10(4):780-790. PubMed ID: 12779428 [TBL] [Abstract][Full Text] [Related]
9. Deep Learning for Feynman's Path Integral in Strong-Field Time-Dependent Dynamics. Liu X; Zhang G; Li J; Shi G; Zhou M; Huang B; Tang Y; Song X; Yang W Phys Rev Lett; 2020 Mar; 124(11):113202. PubMed ID: 32242706 [TBL] [Abstract][Full Text] [Related]
10. Coarse-Graining of Imaginary Time Feynman Path Integrals: Inclusion of Intramolecular Interactions and Bottom-up Force-Matching. Ryu WH; Voth GA J Phys Chem A; 2022 Sep; 126(35):6004-6019. PubMed ID: 36007243 [TBL] [Abstract][Full Text] [Related]
11. An exact imaginary-time path-integral phase-space formulation of multi-time correlation functions. Videla PE; Batista VS J Chem Phys; 2023 Mar; 158(9):094101. PubMed ID: 36889944 [TBL] [Abstract][Full Text] [Related]
12. The sources of Schwinger's Green's functions. Schweber SS Proc Natl Acad Sci U S A; 2005 May; 102(22):7783-8. PubMed ID: 15930139 [TBL] [Abstract][Full Text] [Related]
13. Dephasing representation: Employing the shadowing theorem to calculate quantum correlation functions. Vanícek J Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):055201. PubMed ID: 15600677 [TBL] [Abstract][Full Text] [Related]
14. Coarse-graining of many-body path integrals: Theory and numerical approximations. Ryu WH; Han Y; Voth GA J Chem Phys; 2019 Jun; 150(24):244103. PubMed ID: 31255057 [TBL] [Abstract][Full Text] [Related]
15. Functional density matrix formulation of quantum statistics. Bessa A; de Carvalho CA; Fraga ES Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011103. PubMed ID: 20365319 [TBL] [Abstract][Full Text] [Related]
16. de Broglie Swapping Metadynamics for Quantum and Classical Sampling. Nava M; Quhe R; Palazzesi F; Tiwary P; Parrinello M J Chem Theory Comput; 2015 Nov; 11(11):5114-9. PubMed ID: 26574309 [TBL] [Abstract][Full Text] [Related]
17. Polymer density functional approach to efficient evaluation of path integrals. Broukhno A; Vorontsov-Velyaminov PN; Bohr H Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046703. PubMed ID: 16383563 [TBL] [Abstract][Full Text] [Related]
18. Path-integral approach to the Wigner-Kirkwood expansion. Jizba P; Zatloukal V Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012135. PubMed ID: 24580200 [TBL] [Abstract][Full Text] [Related]
19. A variational principle in Wigner phase-space with applications to statistical mechanics. Poulsen JA J Chem Phys; 2011 Jan; 134(3):034118. PubMed ID: 21261341 [TBL] [Abstract][Full Text] [Related]
20. Ab initio statistical mechanics of surface adsorption and desorption. II. Nuclear quantum effects. Alfè D; Gillan MJ J Chem Phys; 2010 Jul; 133(4):044103. PubMed ID: 20687629 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]