These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 11863611)

  • 1. Dynamics of spinodal decomposition in finite-lifetime systems: Nonlinear statistical theory based on a coarse-grained lattice-gas model.
    Ishikawa A; Ogawa T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026131. PubMed ID: 11863611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The properties of bio-energy transport and influence of structure nonuniformity and temperature of systems on energy transport along polypeptide chains.
    Pang XF
    Prog Biophys Mol Biol; 2012 Jan; 108(1-2):1-46. PubMed ID: 21951575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gravitational dynamics of an infinite shuffled lattice: Particle coarse-graining, nonlinear clustering, and the continuum limit.
    Baertschiger T; Joyce M; Gabrielli A; Sylos Labini F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011116. PubMed ID: 17677419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spinodal decomposition in a binary polymer mixture: dynamic self-consistent-field theory and Monte Carlo simulations.
    Reister E; Müller M; Binder K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):041804. PubMed ID: 11690045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinodal decomposition of polymer solutions: a parallelized molecular dynamics simulation.
    Yelash L; Virnau P; Paul W; Binder K; Müller M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031801. PubMed ID: 18851056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional lattice-Boltzmann simulations of critical spinodal decomposition in binary immiscible fluids.
    González-Segredo N; Nekovee M; Coveney PV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046304. PubMed ID: 12786484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spinodal decomposition of polymer solutions: molecular dynamics simulations of the two-dimensional case.
    Reith D; Bucior K; Yelash L; Virnau P; Binder K
    J Phys Condens Matter; 2012 Mar; 24(11):115102. PubMed ID: 22301356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationships among coarse-grained field theories of fluctuations in polymer liquids.
    Morse DC; Qin J
    J Chem Phys; 2011 Feb; 134(8):084902. PubMed ID: 21361554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crossover model for the work of critical cluster formation in nucleation theory.
    Kalikmanov VI
    J Chem Phys; 2004 Nov; 121(18):8916-23. PubMed ID: 15527357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cluster kinetics and dynamics during spinodal decomposition.
    Yang J; McCoy BJ; Madras G
    J Chem Phys; 2006 Jan; 124(2):024713. PubMed ID: 16422632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase separation dynamics of polydisperse colloids: a mean-field lattice-gas theory.
    de Castro P; Sollich P
    Phys Chem Chem Phys; 2017 Aug; 19(33):22509-22527. PubMed ID: 28809978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-asymptotic wave propagation in collisionless plasmas.
    Lancellotti C; Dorning JJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026406. PubMed ID: 14525119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Random transitions described by the stochastic Smoluchowski-Poisson system and by the stochastic Keller-Segel model.
    Chavanis PH; Delfini L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032139. PubMed ID: 24730821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamical density functional theory and its application to spinodal decomposition.
    Archer AJ; Evans R
    J Chem Phys; 2004 Sep; 121(9):4246-54. PubMed ID: 15332972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metastable lattice of droplets in phase separating polymer blends.
    Panyukov S; Rabin Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 1):061803. PubMed ID: 12188752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gravitational dynamics of an infinite shuffled lattice of particles.
    Baertschiger T; Joyce M; Gabrielli A; Labini FS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 1):021113. PubMed ID: 17358319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase field modelling of spinodal decomposition in the oil/water/asphaltene system.
    Tóth GI; Kvamme B
    Phys Chem Chem Phys; 2015 Aug; 17(31):20259-73. PubMed ID: 26185915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissipative particle dynamics simulation of the interplay between spinodal decomposition and wetting in thin film binary fluids.
    Hore MJ; Laradji M
    J Chem Phys; 2010 Jan; 132(2):024908. PubMed ID: 20095710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capillary attraction induced collapse of colloidal monolayers at fluid interfaces.
    Bleibel J; Domínguez A; Oettel M; Dietrich S
    Soft Matter; 2014 Jun; 10(23):4091-109. PubMed ID: 24740385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase separation of an asymmetric binary-fluid mixture confined in a nanoscopic slit pore: molecular-dynamics simulations.
    Bucior K; Yelash L; Binder K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051602. PubMed ID: 18643074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.