These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 11863634)

  • 1. Unexpected robustness against noise of a class of nonhyperbolic chaotic attractors.
    Kantz H; Grebogi C; Prasad A; Lai YC; Sinde E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026209. PubMed ID: 11863634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noise-induced unstable dimension variability and transition to chaos in random dynamical systems.
    Lai YC; Liu Z; Billings L; Schwartz IB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026210. PubMed ID: 12636779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability properties of nonhyperbolic chaotic attractors with respect to noise.
    Kraut S; Grebogi C
    Phys Rev Lett; 2004 Dec; 93(25):250603. PubMed ID: 15697888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistics of shadowing time in nonhyperbolic chaotic systems with unstable dimension variability.
    Do Y; Lai YC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016213. PubMed ID: 14995699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peculiarities of the relaxation to an invariant probability measure of nonhyperbolic chaotic attractors in the presence of noise.
    Anishchenko VS; Vadivasova TE; Kopeikin AS; Kurths J; Strelkova GI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036206. PubMed ID: 11909211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal and nonuniversal features in shadowing dynamics of nonhyperbolic chaotic systems with unstable-dimension variability.
    Do Y; Lai YC; Liu Z; Kostelich EJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):035202. PubMed ID: 12689122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of noise on the relaxation to an invariant probability measure of nonhyperbolic chaotic attractors.
    Anishchenko VS; Vadivasova TE; Kopeikin AS; Kurths J; Strelkova GI
    Phys Rev Lett; 2001 Jul; 87(5):054101. PubMed ID: 11497772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of noise on statistical properties of nonhyperbolic attractors.
    Anishchenko VS; Kopeikin AS; Vadivasova TE; Strelkova GI; Kurths J
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt A):7886-93. PubMed ID: 11138070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Escaping from nonhyperbolic chaotic attractors.
    Kraut S; Grebogi C
    Phys Rev Lett; 2004 Jun; 92(23):234101. PubMed ID: 15245159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noise induced escape from a nonhyperbolic chaotic attractor of a periodically driven nonlinear oscillator.
    Chen Z; Li Y; Liu X
    Chaos; 2016 Jun; 26(6):063112. PubMed ID: 27368777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractal snapshot components in chaos induced by strong noise.
    Bódai T; Károlyi G; Tél T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046201. PubMed ID: 21599264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [New horizons in medicine. The attractors].
    Guarini G; Onofri E; Menghetti E
    Recenti Prog Med; 1993 Sep; 84(9):618-23. PubMed ID: 8210627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unstable dimension variability and synchronization of chaotic systems.
    Viana RL; Grebogi C
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt A):462-8. PubMed ID: 11088481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability of attractors formed by inertial particles in open chaotic flows.
    Do Y; Lai YC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036203. PubMed ID: 15524608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Method for measuring unstable dimension variability from time series.
    McCullen NJ; Moresco P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046203. PubMed ID: 16711913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting variation in chaotic attractors.
    Carroll TL
    Chaos; 2011 Jun; 21(2):023128. PubMed ID: 21721770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Periodic orbit analysis at the onset of the unstable dimension variability and at the blowout bifurcation.
    Pereira RF; de S Pinto SE; Viana RL; Lopes SR; Grebogi C
    Chaos; 2007 Jun; 17(2):023131. PubMed ID: 17614685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A New Fractional-Order Chaotic System with Different Families of Hidden and Self-Excited Attractors.
    Munoz-Pacheco JM; Zambrano-Serrano E; Volos C; Jafari S; Kengne J; Rajagopal K
    Entropy (Basel); 2018 Jul; 20(8):. PubMed ID: 33265653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scaling laws for noise-induced super-persistent chaotic transients.
    Do Y; Lai YC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046208. PubMed ID: 15903771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable and unstable attractors in Boolean networks.
    Klemm K; Bornholdt S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):055101. PubMed ID: 16383673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.