These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 11863644)

  • 1. Control of chaotic solitons by a time-delayed feedback mechanism.
    Fronczak P; Hołyst JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026219. PubMed ID: 11863644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of chaotic spatiotemporal spiking by time-delay autosynchronization.
    Franceschini G; Bose S; Schöll E
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt A):5426-34. PubMed ID: 11970414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissipative dynamics in a finite chaotic environment: Relationship between damping rate and Lyapunov exponent.
    Xavier JC; Strunz WT; Beims MW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022908. PubMed ID: 26382477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical properties and optimization of time-delayed feedback control.
    Pyragas K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):026207. PubMed ID: 12241267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lyapunov exponent diagrams of a 4-dimensional Chua system.
    Stegemann C; Albuquerque HA; Rubinger RM; Rech PC
    Chaos; 2011 Sep; 21(3):033105. PubMed ID: 21974640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Output-feedback lag-synchronization of time-delayed chaotic systems in the presence of external disturbances subjected to input nonlinearity.
    Pourdehi S; Karimipour D; Karimaghaee P
    Chaos; 2011 Dec; 21(4):043128. PubMed ID: 22225365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zero Lyapunov exponent in the vicinity of the saddle-node bifurcation point in the presence of noise.
    Hramov AE; Koronovskii AA; Kurovskaya MK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036212. PubMed ID: 18851126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chaotic dynamics of one-dimensional systems with periodic boundary conditions.
    Kumar P; Miller BN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062918. PubMed ID: 25615175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lyapunov exponents from unstable periodic orbits.
    Franzosi R; Poggi P; Cerruti-Sola M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036218. PubMed ID: 15903557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling chaos in a fast diode resonator using extended time-delay autosynchronization: Experimental observations and theoretical analysis.
    Sukow DW; Bleich ME; Gauthier DJ; Socolar JE
    Chaos; 1997 Dec; 7(4):560-576. PubMed ID: 12779682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The largest Lyapunov exponent of chaotic dynamical system in scale space and its application.
    Liu HF; Yang YZ; Dai ZH; Yu ZH
    Chaos; 2003 Sep; 13(3):839-44. PubMed ID: 12946175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complexity and bandwidth enhancement in unidirectionally coupled semiconductor lasers with time-delayed optical feedback.
    Kanno K; Uchida A; Bunsen M
    Phys Rev E; 2016 Mar; 93(3):032206. PubMed ID: 27078343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of spatial inhomogeneities on the dynamics of cavity solitons in quadratically nonlinear media.
    Fedorov S; Michaelis D; Peschel U; Etrich C; Skryabin DV; Rosanov N; Lederer F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036610. PubMed ID: 11580465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chaos control and synchronization in Bragg acousto-optic bistable systems driven by a separate chaotic system.
    Wang R; Gao JY
    Chaos; 2005 Sep; 15(3):33110. PubMed ID: 16252984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite-time Lyapunov exponents in time-delayed nonlinear dynamical systems.
    Kanno K; Uchida A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032918. PubMed ID: 24730924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using ergodicity of chaotic systems for improving the global properties of the delayed feedback control method.
    Pyragas K; Pyragas V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):067201. PubMed ID: 20365303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous motion of cavity solitons induced by a delayed feedback.
    Tlidi M; Vladimirov AG; Pieroux D; Turaev D
    Phys Rev Lett; 2009 Sep; 103(10):103904. PubMed ID: 19792313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ray chaos in an architectural acoustic semi-stadium system.
    Yu X; Zhang Y
    Chaos; 2013 Mar; 23(1):013107. PubMed ID: 23556944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noise-induced unstable dimension variability and transition to chaos in random dynamical systems.
    Lai YC; Liu Z; Billings L; Schwartz IB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026210. PubMed ID: 12636779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining the sub-Lyapunov exponent of delay systems from time series.
    Jüngling T; Soriano MC; Fischer I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062908. PubMed ID: 26172773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.