These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 11863658)

  • 1. Instability of a thin film flowing on a rotating horizontal or inclined plane.
    Dávalos-Orozco LA; Busse FH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026312. PubMed ID: 11863658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Instability suppression in viscoelastic film flows down an inclined plane lined with a deformable solid layer.
    Jain A; Shankar V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046314. PubMed ID: 17995113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gravity-driven fingering simulations for a thin liquid film flowing down the outside of a vertical cylinder.
    Mayo LC; McCue SW; Moroney TJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053018. PubMed ID: 23767631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrified film on a porous inclined plane: dynamics and stability.
    Uma B; Usha R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016305. PubMed ID: 20866723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of instability in liquid flow down an inclined plane by a deformable solid layer.
    Shankar V; Sahu AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016301. PubMed ID: 16486271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Instabilities of a liquid film flowing down an inclined porous plane.
    Liu R; Liu Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036316. PubMed ID: 19905221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear evolution of viscoplastic film flows down an inclined plane.
    Mounkaila Noma D; Dagois-Bohy S; Millet S; Ben Hadid H; Botton V; Henry D
    Eur Phys J E Soft Matter; 2023 Aug; 46(8):68. PubMed ID: 37535112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Film depth and concentration banding in free-surface Couette flow of a suspension.
    Timberlake BD; Morris JF
    Philos Trans A Math Phys Eng Sci; 2003 May; 361(1806):895-910. PubMed ID: 12804220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Waves and instabilities of viscoelastic fluid film flowing down an inclined wavy bottom.
    Mukhopadhyay S; Mukhopadhyay A
    Phys Rev E; 2020 Aug; 102(2-1):023117. PubMed ID: 32942486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscous flow of a volatile liquid on an inclined heated surface.
    Ajaev VS
    J Colloid Interface Sci; 2004 Dec; 280(1):165-73. PubMed ID: 15476787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entropy Production on the Gravity-Driven Flow with Free Surface Down an Inclined Plane Subjected to Constant Temperature.
    Lee J
    Entropy (Basel); 2018 Apr; 20(4):. PubMed ID: 33265384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electro-osmotic flow in a rotating rectangular microchannel.
    Ng CO; Qi C
    Proc Math Phys Eng Sci; 2015 Jul; 471(2179):20150200. PubMed ID: 26345088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic modes of rapidly rotating ellipsoids subject to centrifugal gravity.
    Vidal J; Cébron D
    J Acoust Soc Am; 2021 Aug; 150(2):1467. PubMed ID: 34470306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Odd-viscosity-induced instability of a falling thin film with an external electric field.
    Bao G; Jian Y
    Phys Rev E; 2021 Jan; 103(1-1):013104. PubMed ID: 33601572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulations of a falling film on the inner surface of a rotating cylinder.
    Farooq U; Stafford J; Petit C; Matar OK
    Phys Rev E; 2020 Oct; 102(4-1):043106. PubMed ID: 33212700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient growth of Ekman-Couette flow.
    Shi L; Hof B; Tilgner A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013001. PubMed ID: 24580314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of an electrostatically modified Kuramoto-Sivashinsky-Korteweg-de Vries equation arising in falling film flows.
    Tseluiko D; Papageorgiou DT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016322. PubMed ID: 20866740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pattern formation in crystal growth under parabolic shear flow.
    Ueno K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021603. PubMed ID: 14524982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coriolis effects on rotating Hele-Shaw flows: a conformal-mapping approach.
    Miranda JA; Gadêlha H; Dorsey AT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 2):066306. PubMed ID: 21230733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable two-dimensional solitary pulses in linearly coupled dissipative Kadomtsev-Petviashvili equations.
    Feng BF; Malomed BA; Kawahara T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056311. PubMed ID: 12513600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.