These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 118637)

  • 1. A comparative study on the uptake and subsequent decarboxylation of monoamine precursors in cerebral microvessels.
    Hardebo JE; Falck B; Owman C
    Acta Physiol Scand; 1979 Oct; 107(2):161-7. PubMed ID: 118637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the activity of L-threo-3,4-dihydroxyphenylserine (L-DOPS) as a catecholamine precursor in the brain. Comparison with that of L-dopa.
    Kato T; Karai N; Katsuyama M; Nakamura M; Katsube J
    Biochem Pharmacol; 1987 Sep; 36(18):3051-7. PubMed ID: 3115271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Barrier mechanisms for neurotransmitter monoamines and their precursors at the blood-brain interface.
    Hardebo JE; Owman C
    Ann Neurol; 1980 Jul; 8(1):1-31. PubMed ID: 6105837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the in vitro uptake of monoamines into brain microvessels.
    Hardebo JE; Owman C
    Acta Physiol Scand; 1980 Mar; 108(3):223-9. PubMed ID: 6103638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antagonistic actions of renal dopamine and 5-hydroxytryptamine: effects of amine precursors on the cell inward transfer and decarboxylation.
    Soares-da-Silva P; Pinto-do-O PC
    Br J Pharmacol; 1996 Mar; 117(6):1187-92. PubMed ID: 8882614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the enzymatic blood-brain barrier: quantitative measurements of DOPA decarboxylase in the wall of microvessels as related to the parenchyma in various CNS regions.
    Hardebo JE; Falck B; Owman C; Rosengren E
    Acta Physiol Scand; 1979 Apr; 105(4):453-60. PubMed ID: 452922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymes related to monoamine transmitter metabolism in brain microvessels.
    Hardebo JE; Emson PC; Falck B; Owman C; Rosengren E
    J Neurochem; 1980 Dec; 35(6):1388-93. PubMed ID: 6108352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Synthesis of norepinephrine from 3,4-dihydroxyphenylserine by L-aromatic amino acid decarboxylase of the rat brain and kidneys].
    Fujiwara H; Inagaki C; Ikeda Y; Tanaka C
    Nihon Yakurigaku Zasshi; 1976 Oct; 72(7):891-8. PubMed ID: 14060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The stereoisomers of 3,4-dihydroxyphenylserine as precursors of norepinephrine.
    Bartholini J; Constantinidis J; Puig M; Tissot R; Pletscher A
    J Pharmacol Exp Ther; 1975 May; 193(2):523-32. PubMed ID: 1142103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Barrier mechanisms for neutrotransmitter monoamines in the choroid plexus.
    Lindvall M; Hardebo JE; Owman C
    Acta Physiol Scand; 1980 Mar; 108(3):215-21. PubMed ID: 6103637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of enzymic decarboxylation of L-threo-3,4-dihydroxyphenylserine using hog renal L-aromatic amino acid decarboxylase.
    Inagaki C; Tanaka C
    Biochem Pharmacol; 1978 Apr; 27(7):1081-6. PubMed ID: 26357
    [No Abstract]   [Full Text] [Related]  

  • 12. Characterization of recombinant human aromatic L-amino acid decarboxylase expressed in COS cells.
    Sumi C; Ichinose H; Nagatsu T
    J Neurochem; 1990 Sep; 55(3):1075-8. PubMed ID: 2117047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic decarboxylation of L-threo-3,4-dihydroxyphenylserine in rat heart.
    Ohmura I; Inagaki C; Araki H; Tanaka C
    Jpn J Pharmacol; 1978 Oct; 28(5):747-53. PubMed ID: 31501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Species variation in pancreatic islet monoamine uptake and action.
    Mahony C; Feldman JM
    Diabetes; 1977 Apr; 26(4):257-61. PubMed ID: 321287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The metabolism of L-DOPA and L-threo-3,4-dihydroxyphenylserine and their effects on monoamines in the human brain: analysis of the intraventricular fluid from parkinsonian patients.
    Maruyama W; Naoi M; Narabayashi H
    J Neurol Sci; 1996 Jul; 139(1):141-8. PubMed ID: 8836986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of aromatic L-amino acid decarboxylase in serum of various animals by high-performance liquid chromatography with electrochemical detection.
    Rahman MK; Nagatsu T; Kato T
    Life Sci; 1981 Feb; 28(5):485-92. PubMed ID: 6970873
    [No Abstract]   [Full Text] [Related]  

  • 17. Decarboxylation of L-dopa and 5-hydroxytryptophan in dispersed rat pancreas acinar cells.
    Yu EW; Stern L; Tenenhouse A
    Pharmacology; 1984; 29(4):185-92. PubMed ID: 6494232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of L-DOPA uptake and decarboxylating neuronal structures in the cat brain using dopamine immunohistochemistry.
    Kitahama K; Geffard M; Araneda S; Arai R; Ogawa K; Nagatsu I; Pequignot JM
    Brain Res; 2007 Sep; 1167():56-70. PubMed ID: 17692830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Interactions of cerebral serotonin and catecholamines].
    Watanabe Y
    Nihon Yakurigaku Zasshi; 1983 May; 81(5):365-83. PubMed ID: 6195056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preferential decarboxylation of L-threo-3,4-dihydroxyphenylserine in rat renal tissues.
    Soares-da-Silva P
    Gen Pharmacol; 1993 Jan; 24(1):75-81. PubMed ID: 8482506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.