These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 11863710)
1. Quantum afterburner: improving the efficiency of an ideal heat engine. Scully MO Phys Rev Lett; 2002 Feb; 88(5):050602. PubMed ID: 11863710 [TBL] [Abstract][Full Text] [Related]
2. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1/2 coupled to an arbitrary spin. Altintas F; Müstecaplıoğlu ÖE Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022142. PubMed ID: 26382378 [TBL] [Abstract][Full Text] [Related]
3. Quantum mechanical bound for efficiency of quantum Otto heat engine. Park JM; Lee S; Chun HM; Noh JD Phys Rev E; 2019 Jul; 100(1-1):012148. PubMed ID: 31499873 [TBL] [Abstract][Full Text] [Related]
4. Quantum heat engine power can be increased by noise-induced coherence. Scully MO; Chapin KR; Dorfman KE; Kim MB; Svidzinsky A Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15097-100. PubMed ID: 21876187 [TBL] [Abstract][Full Text] [Related]
6. Optimal efficiency of a noisy quantum heat engine. Stefanatos D Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012119. PubMed ID: 25122263 [TBL] [Abstract][Full Text] [Related]
7. Quantum Heat Engines with Complex Working Media, Complete Otto Cycles and Heuristics. Johal RS; Mehta V Entropy (Basel); 2021 Sep; 23(9):. PubMed ID: 34573774 [TBL] [Abstract][Full Text] [Related]
8. Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence. Dorfman KE; Xu D; Cao J Phys Rev E; 2018 Apr; 97(4-1):042120. PubMed ID: 29758726 [TBL] [Abstract][Full Text] [Related]
9. Finite-time quantum Otto engine: Surpassing the quasistatic efficiency due to friction. Lee S; Ha M; Park JM; Jeong H Phys Rev E; 2020 Feb; 101(2-1):022127. PubMed ID: 32168587 [TBL] [Abstract][Full Text] [Related]
10. Quantum Otto engine of a two-level atom with single-mode fields. Wang J; Wu Z; He J Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041148. PubMed ID: 22680458 [TBL] [Abstract][Full Text] [Related]
11. Performance of a multilevel quantum heat engine of an ideal N-particle Fermi system. Wang R; Wang J; He J; Ma Y Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021133. PubMed ID: 23005748 [TBL] [Abstract][Full Text] [Related]
12. Thermal entanglement in two-atom cavity QED and the entangled quantum Otto engine. Wang H; Liu S; He J Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041113. PubMed ID: 19518179 [TBL] [Abstract][Full Text] [Related]
13. Bounds on fluctuations for finite-time quantum Otto cycle. Saryal S; Agarwalla BK Phys Rev E; 2021 Jun; 103(6):L060103. PubMed ID: 34271746 [TBL] [Abstract][Full Text] [Related]
14. Measurement-based quantum Otto engine with a two-spin system coupled by anisotropic interaction: Enhanced efficiency at finite times. Purkait C; Biswas A Phys Rev E; 2023 May; 107(5-1):054110. PubMed ID: 37329072 [TBL] [Abstract][Full Text] [Related]
15. Performance analysis of a two-state quantum heat engine working with a single-mode radiation field in a cavity. Wang J; He J; He X Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041127. PubMed ID: 22181107 [TBL] [Abstract][Full Text] [Related]
16. Efficiency at maximum power of a heat engine working with a two-level atomic system. Wang R; Wang J; He J; Ma Y Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042119. PubMed ID: 23679385 [TBL] [Abstract][Full Text] [Related]
17. Boosting work characteristics and overall heat-engine performance via shortcuts to adiabaticity: quantum and classical systems. Deng J; Wang QH; Liu Z; Hänggi P; Gong J Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062122. PubMed ID: 24483401 [TBL] [Abstract][Full Text] [Related]
18. Otto Engine: Classical and Quantum Approach. Peña FJ; Negrete O; Cortés N; Vargas P Entropy (Basel); 2020 Jul; 22(7):. PubMed ID: 33286527 [TBL] [Abstract][Full Text] [Related]
19. Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine. Xu YY; Chen B; Liu J Phys Rev E; 2018 Feb; 97(2-1):022130. PubMed ID: 29548214 [TBL] [Abstract][Full Text] [Related]
20. Efficiency at maximum power of a quantum Otto cycle within finite-time or irreversible thermodynamics. Wu F; He J; Ma Y; Wang J Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062134. PubMed ID: 25615071 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]