BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 11863939)

  • 1. Drastic reduction of plasmon damping in gold nanorods.
    Sönnichsen C; Franzl T; Wilk T; von Plessen G; Feldmann J; Wilson O; Mulvaney P
    Phys Rev Lett; 2002 Feb; 88(7):077402. PubMed ID: 11863939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical Interface Damping of Surface Plasmon Resonances.
    Lee SA; Link S
    Acc Chem Res; 2021 Apr; 54(8):1950-1960. PubMed ID: 33788547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative.
    Habteyes TG; Dhuey S; Wood E; Gargas D; Cabrini S; Schuck PJ; Alivisatos AP; Leone SR
    ACS Nano; 2012 Jun; 6(6):5702-9. PubMed ID: 22646820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study.
    Novo C; Gomez D; Perez-Juste J; Zhang Z; Petrova H; Reismann M; Mulvaney P; Hartland GV
    Phys Chem Chem Phys; 2006 Aug; 8(30):3540-6. PubMed ID: 16871343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance.
    Hu M; Novo C; Funston A; Wang H; Staleva H; Zou S; Mulvaney P; Xia Y; Hartland GV
    J Mater Chem; 2008; 18(17):1949-1960. PubMed ID: 18846243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of rod-shaped gold nanorattles with improved plasmon sensitivity and catalytic activity.
    Khalavka Y; Becker J; Sönnichsen C
    J Am Chem Soc; 2009 Feb; 131(5):1871-5. PubMed ID: 19154114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical Interface Damping Depends on Electrons Reaching the Surface.
    Foerster B; Joplin A; Kaefer K; Celiksoy S; Link S; Sönnichsen C
    ACS Nano; 2017 Mar; 11(3):2886-2893. PubMed ID: 28301133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revisiting the plasmon radiation damping of gold nanorods.
    Yang Y; Xie H; You J; Ye W
    Phys Chem Chem Phys; 2022 Feb; 24(7):4131-4135. PubMed ID: 35113102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dispersive Plasmon Damping in Single Gold Nanorods by Platinum Adsorbates.
    Xu P; Lu X; Han S; Ou W; Li Y; Chen S; Xue J; Ding Y; Ni W
    Small; 2016 Sep; 12(36):5081-5089. PubMed ID: 27159087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene.
    Hoggard A; Wang LY; Ma L; Fang Y; You G; Olson J; Liu Z; Chang WS; Ajayan PM; Link S
    ACS Nano; 2013 Dec; 7(12):11209-17. PubMed ID: 24266755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlocal Optical Response of Particle Plasmons in Single Gold Nanorods.
    Ye W
    Nano Lett; 2023 Aug; 23(16):7658-7664. PubMed ID: 37539992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dielectric Function for Gold in Plasmonics Applications: Size Dependence of Plasmon Resonance Frequencies and Damping Rates for Nanospheres.
    Derkachova A; Kolwas K; Demchenko I
    Plasmonics; 2016; 11():941-951. PubMed ID: 27340380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale plasmon-exciton interaction: the role of radiation damping and mode-volume in determining coupling strength.
    Kumar M; Dey J; Verma MS; Chandra M
    Nanoscale; 2020 Jun; 12(21):11612-11618. PubMed ID: 32441712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of chemical interface damping on surface plasmon dephasing.
    Therrien AJ; Kale MJ; Yuan L; Zhang C; Halas NJ; Christopher P
    Faraday Discuss; 2019 May; 214(0):59-72. PubMed ID: 30810555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast dephasing of surface plasmon excitation in silver nanoparticles: influence of particle size, shape, and chemical surrounding.
    Bosbach J; Hendrich C; Stietz F; Vartanyan T; Träger F
    Phys Rev Lett; 2002 Dec; 89(25):257404. PubMed ID: 12484918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon-modulated photoluminescence of individual gold nanostructures.
    Hu H; Duan H; Yang JK; Shen ZX
    ACS Nano; 2012 Nov; 6(11):10147-55. PubMed ID: 23072661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiative and nonradiative properties of single plasmonic nanoparticles and their assemblies.
    Chang WS; Willingham B; Slaughter LS; Dominguez-Medina S; Swanglap P; Link S
    Acc Chem Res; 2012 Nov; 45(11):1936-45. PubMed ID: 22512668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.