These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 11863979)

  • 21. Foams stabilised by mixtures of nanoparticles and oppositely charged surfactants: relationship between bubble shrinkage and foam coarsening.
    Maestro A; Rio E; Drenckhan W; Langevin D; Salonen A
    Soft Matter; 2014 Sep; 10(36):6975-83. PubMed ID: 24832218
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mass transfer of volatile organic carbons through aqueous foams.
    Gautam PS; Mohanty KK
    J Colloid Interface Sci; 2004 May; 273(2):611-25. PubMed ID: 15082401
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coarsening transitions of wet liquid foams under microgravity conditions.
    Pasquet M; Galvani N; Requier A; Cohen-Addad S; Höhler R; Pitois O; Rio E; Salonen A; Langevin D
    Soft Matter; 2023 Aug; 19(33):6267-6279. PubMed ID: 37551883
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physical chemistry in foam drainage and coarsening.
    Saint-Jalmes A
    Soft Matter; 2006 Sep; 2(10):836-849. PubMed ID: 32680275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Foam coarsening under a steady shear: interplay between bubble rearrangement and film thinning dynamics.
    Saint-Jalmes A; Trégouët C
    Soft Matter; 2023 Mar; 19(11):2090-2098. PubMed ID: 36853265
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coarsening dynamics of three-dimensional levitated foams: From wet to dry.
    Isert N; Maret G; Aegerter CM
    Eur Phys J E Soft Matter; 2013 Oct; 36(10):116. PubMed ID: 24136181
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stabilization of foams by the combined effects of an insoluble gas species and gelation.
    Bey H; Wintzenrieth F; Ronsin O; Höhler R; Cohen-Addad S
    Soft Matter; 2017 Oct; 13(38):6816-6830. PubMed ID: 28825087
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coarsening of Foams Driven by Concentration Gradients of Gases of Different Solubilities.
    Dollet B
    Langmuir; 2023 Nov; 39(45):16174-16181. PubMed ID: 37916799
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Breakup of bubbles and drops in steadily sheared foams and concentrated emulsions.
    Golemanov K; Tcholakova S; Denkov ND; Ananthapadmanabhan KP; Lips A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051405. PubMed ID: 19113128
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coarsening of a two-dimensional foam on a dome.
    Roth AE; Jones CD; Durian DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021402. PubMed ID: 23005758
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ripening of a draining foam bubble.
    Louvet N; Rouyer F; Pitois O
    J Colloid Interface Sci; 2009 Jun; 334(1):82-6. PubMed ID: 19380148
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Foam fractionation for effective removal of Pseudomonas aeruginosa from water body: Strengthening foam drainage by artificially inducing foam evolution.
    Jia L; Liu W; Cao J; Wu Z; Yang C
    J Environ Manage; 2021 Aug; 291():112628. PubMed ID: 33932836
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimentally testing a generalized coarsening model for individual bubbles in quasi-two-dimensional wet foams.
    Chieco AT; Durian DJ
    Phys Rev E; 2021 Jan; 103(1-1):012610. PubMed ID: 33601566
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measurement of bubble size distribution in a gas-liquid foam using pulsed-field gradient nuclear magnetic resonance.
    Stevenson P; Sederman AJ; Mantle MD; Li X; Gladden LF
    J Colloid Interface Sci; 2010 Dec; 352(1):114-20. PubMed ID: 20832808
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Drainage of single Plateau borders: direct observation of rigid and mobile interfaces.
    Koehler SA; Hilgenfeldt S; Weeks ER; Stone HA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 1):040601. PubMed ID: 12443164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Statistics of bubble rearrangement dynamics in a coarsening foam.
    Gittings AS; Durian DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 2):066313. PubMed ID: 19256951
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stability and viscoelasticity of magneto-Pickering foams.
    Blanco E; Lam S; Smoukov SK; Velikov KP; Khan SA; Velev OD
    Langmuir; 2013 Aug; 29(32):10019-27. PubMed ID: 23863109
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tailoring the microstructure of particle-stabilized wet foams.
    Gonzenbach UT; Studart AR; Tervoort E; Gauckler LJ
    Langmuir; 2007 Jan; 23(3):1025-32. PubMed ID: 17241009
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surfactant mixtures for control of bubble surface mobility in foam studies.
    Golemanov K; Denkov ND; Tcholakova S; Vethamuthu M; Lips A
    Langmuir; 2008 Sep; 24(18):9956-61. PubMed ID: 18698860
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Growing a particle-stabilized aqueous foam.
    Tyowua AT; Binks BP
    J Colloid Interface Sci; 2020 Mar; 561():127-135. PubMed ID: 31812859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.