These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 11864732)

  • 1. A rostro-caudal dissociation in the dorsal and ventral striatum of the juvenile SHR suggests an anterior hypo- and a posterior hyperfunctioning mesocorticolimbic system.
    Papa M; Diewald L; Carey MP; Esposito FJ; Gironi Carnevale UA; Sadile AG
    Behav Brain Res; 2002 Mar; 130(1-2):171-9. PubMed ID: 11864732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple evidence of a segmental defect in the anterior forebrain of an animal model of hyperactivity and attention deficit.
    Sadile AG
    Neurosci Biobehav Rev; 2000 Jan; 24(1):161-9. PubMed ID: 10654674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remodeling of neural networks in the anterior forebrain of an animal model of hyperactivity and attention deficits as monitored by molecular imaging probes.
    Papa M; Sellitti S; Sadile AG
    Neurosci Biobehav Rev; 2000 Jan; 24(1):149-56. PubMed ID: 10654672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential distribution, affinity and plasticity of dopamine D-1 and D-2 receptors in the target sites of the mesolimbic system in an animal model of ADHD.
    Carey MP; Diewald LM; Esposito FJ; Pellicano MP; Gironi Carnevale UA; Sergeant JA; Papa M; Sadile AG
    Behav Brain Res; 1998 Jul; 94(1):173-85. PubMed ID: 9708848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced transduction mechanisms in the anterior accumbal interface of an animal model of Attention-Deficit Hyperactivity Disorder.
    Papa M; Sergeant JA; Sadile AG
    Behav Brain Res; 1998 Jul; 94(1):187-95. PubMed ID: 9708849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. D1 and D2 dopamine receptors differentially increase Fos-like immunoreactivity in accumbal projections to the ventral pallidum and midbrain.
    Robertson GS; Jian M
    Neuroscience; 1995 Feb; 64(4):1019-34. PubMed ID: 7753373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A morphometric evidence for a hyperfunctioning mesolimbic system in an animal model of ADHD.
    Viggiano D; Grammatikopoulos G; Sadile AG
    Behav Brain Res; 2002 Mar; 130(1-2):181-9. PubMed ID: 11864733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavioural, pharmacological, morpho-functional molecular studies reveal a hyperfunctioning mesocortical dopamine system in an animal model of attention deficit and hyperactivity disorder.
    Viggiano D; Vallone D; Ruocco LA; Sadile AG
    Neurosci Biobehav Rev; 2003 Nov; 27(7):683-9. PubMed ID: 14624812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered dopaminergic function in the prefrontal cortex, nucleus accumbens and caudate-putamen of an animal model of attention-deficit hyperactivity disorder--the spontaneously hypertensive rat.
    Russell V; de Villiers A; Sagvolden T; Lamm M; Taljaard J
    Brain Res; 1995 Apr; 676(2):343-51. PubMed ID: 7614004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Downregulation of Dopamine D1-like Receptor Pathways of GABAergic Interneurons in the Anterior Cingulate Cortex of Spontaneously Hypertensive Rats.
    Satoh H; Suzuki H; Saitow F
    Neuroscience; 2018 Dec; 394():267-285. PubMed ID: 30394321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced CaMKII-positive neurones in the accumbens shell of an animal model of attention-deficit hyperactivity disorder.
    Papa M; Sagvolden T; Sergeant JA; Sadile AG
    Neuroreport; 1996 Nov; 7(18):3017-20. PubMed ID: 9116231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionally selective neurochemical afferents and efferents of the mesocorticolimbic and nigrostriatal dopamine system.
    Amalric M; Koob GF
    Prog Brain Res; 1993; 99():209-26. PubMed ID: 8108549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catecholamine innervation of the basal forebrain. IV. Topography of the dopamine projection to the basal forebrain and neostriatum.
    Fallon JH; Moore RY
    J Comp Neurol; 1978 Aug; 180(3):545-80. PubMed ID: 659674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Region-specific elevation of D₁ receptor-mediated neurotransmission in the nucleus accumbens of SHR, a rat model of attention deficit/hyperactivity disorder.
    Ohno Y; Okano M; Masui A; Imaki J; Egawa M; Yoshihara C; Tatara A; Mizuguchi Y; Sasa M; Shimizu S
    Neuropharmacology; 2012 Sep; 63(4):547-54. PubMed ID: 22580374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The spontaneously hypertensive and Wistar Kyoto rat models of ADHD exhibit sub-regional differences in dopamine release and uptake in the striatum and nucleus accumbens.
    Miller EM; Pomerleau F; Huettl P; Russell VA; Gerhardt GA; Glaser PE
    Neuropharmacology; 2012 Dec; 63(8):1327-34. PubMed ID: 22960443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional brain activity is globally elevated by dopamine D2 receptor knockdown in the ventral tegmental area.
    Martin TA; Smith HR; Luessen DJ; Chen R; Porrino LJ
    Brain Res; 2020 Jan; 1727():146552. PubMed ID: 31726041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methylphenidate normalizes elevated dopamine transporter densities in an animal model of the attention-deficit/hyperactivity disorder combined type, but not to the same extent in one of the attention-deficit/hyperactivity disorder inattentive type.
    Roessner V; Sagvolden T; Dasbanerjee T; Middleton FA; Faraone SV; Walaas SI; Becker A; Rothenberger A; Bock N
    Neuroscience; 2010 Jun; 167(4):1183-91. PubMed ID: 20211696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumbal core: essential link in feed-forward spiraling striato-nigro-striatal in series connected loop.
    Ikeda H; Koshikawa N; Cools AR
    Neuroscience; 2013 Nov; 252():60-7. PubMed ID: 23933312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Striatal Distribution and Cytoarchitecture of Dopamine Receptor Subtype 1 and 2: Evidence from Double-Labeling Transgenic Mice.
    Ren K; Guo B; Dai C; Yao H; Sun T; Liu X; Bai Z; Wang W; Wu S
    Front Neural Circuits; 2017; 11():57. PubMed ID: 28860974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences between electrically-, ritalin- and D-amphetamine-stimulated release of [3H]dopamine from brain slices suggest impaired vesicular storage of dopamine in an animal model of Attention-Deficit Hyperactivity Disorder.
    Russell V; de Villiers A; Sagvolden T; Lamm M; Taljaard J
    Behav Brain Res; 1998 Jul; 94(1):163-71. PubMed ID: 9708847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.