These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 11865869)
1. Clinostats and bioreactors. Klaus DM Gravit Space Biol Bull; 2001 Jun; 14(2):55-64. PubMed ID: 11865869 [TBL] [Abstract][Full Text] [Related]
2. The simulation of microgravity conditions on the ground. Albrecht-Buehler G ASGSB Bull; 1992 Oct; 5(2):3-10. PubMed ID: 11537639 [TBL] [Abstract][Full Text] [Related]
3. Dynamics of a microcarrier particle in the simulated microgravity environment of a rotating-wall vessel. Gao H; Ayyaswamy PS; Ducheyne P Microgravity Sci Technol; 1997; 10(3):154-65. PubMed ID: 11543416 [TBL] [Abstract][Full Text] [Related]
4. A NMR-compatible and reduced gravity simulation based (NRG) bioreactor for on-line monitoring cell culture metabolism. Bradamante S; Barenghi L; Villa A J Gravit Physiol; 2004 Jul; 11(2):P191-2. PubMed ID: 16237833 [TBL] [Abstract][Full Text] [Related]
5. Extracellular mass transport considerations for space flight research concerning suspended and adherent in vitro cell cultures. Klaus DM; Benoit MR; Nelson ES; Hammond TG J Gravit Physiol; 2004 Mar; 11(1):17-27. PubMed ID: 16145796 [TBL] [Abstract][Full Text] [Related]
6. The application of low shear modeled microgravity to 3-D cell biology and tissue engineering. Navran S Biotechnol Annu Rev; 2008; 14():275-96. PubMed ID: 18606368 [TBL] [Abstract][Full Text] [Related]
7. Theoretical and experimental investigations on the fast rotating clinostat. Ayed M; Pironneau O; Planel H; Gasset G; Richoilley G Microgravity Sci Technol; 1992 Jul; 5(2):98-102. PubMed ID: 11541481 [TBL] [Abstract][Full Text] [Related]
8. RWPV bioreactor mass transport: earth-based and in microgravity. Begley CM; Kleis SJ Biotechnol Bioeng; 2002 Nov; 80(4):465-76. PubMed ID: 12325155 [TBL] [Abstract][Full Text] [Related]
9. Possible mechanisms of indirect gravity sensing by cells. Albrecht-Buehler G ASGSB Bull; 1991 Jul; 4(2):25-34. PubMed ID: 11537179 [TBL] [Abstract][Full Text] [Related]
10. Simulated weightlessness in the design and exploitation of a NMR-compatible bioreactor. Bradamante S; Barenghi L; Villa A Biotechnol Prog; 2004; 20(5):1454-9. PubMed ID: 15458330 [TBL] [Abstract][Full Text] [Related]
11. Clinorotation inhibits chondrogenesis in micromass cultures of embryonic mouse limb cells. Duke J; Sato A; Hamazaki T; Montufar-Solis D Environ Med; 1995 Aug; 39(1):1-12. PubMed ID: 11540540 [TBL] [Abstract][Full Text] [Related]
12. Oxygen transport and consumption by suspended cells in microgravity: a multiphase analysis. Kwon O; Devarakonda SB; Sankovic JM; Banerjee RK Biotechnol Bioeng; 2008 Jan; 99(1):99-107. PubMed ID: 17614322 [TBL] [Abstract][Full Text] [Related]
13. Spaceflight bioreactor studies of cells and tissues. Freed LE; Vunjak-Novakovic G Adv Space Biol Med; 2002; 8():177-95. PubMed ID: 12951697 [TBL] [Abstract][Full Text] [Related]
14. Cell behavior in simulated microgravity: a comparison of results obtained with RWV and RPM. Villa A; Versari S; Maier JA; Bradamante S Gravit Space Biol Bull; 2005 Jun; 18(2):89-90. PubMed ID: 16038099 [No Abstract] [Full Text] [Related]
15. Nitric oxide affects preimplantation embryonic development in a rotating wall vessel bioreactor simulating microgravity. Cao YJ; Fan XJ; Shen Z; Ma BH; Duan EK Cell Biol Int; 2007 Jan; 31(1):24-9. PubMed ID: 17052925 [TBL] [Abstract][Full Text] [Related]
16. Microgravity cultivation of cells and tissues. Freed LE; Pellis N; Searby N; de Luis J; Preda C; Bordonaro J; Vunjak-Novakovic G Gravit Space Biol Bull; 1999 May; 12(2):57-66. PubMed ID: 11541784 [TBL] [Abstract][Full Text] [Related]
17. Simulated conditions of microgravity suppress progesterone production by luteal cells of the pregnant rat. Bhat GK; Yang H; Sridaran R J Gravit Physiol; 2001 Dec; 8(2):57-66. PubMed ID: 12365451 [TBL] [Abstract][Full Text] [Related]
18. Displacement of statoliths in Chara rhizoids during horizontal rotation on clinostats. Cai WM; Braun M; Sievers A Shi Yan Sheng Wu Xue Bao; 1997 Jun; 30(2):147-55. PubMed ID: 11536934 [TBL] [Abstract][Full Text] [Related]
19. Prospects for use of microgravity-based bioreactors to study three-dimensional host-tumor interactions in human neoplasia. Jessup JM; Goodwin TJ; Spaulding G J Cell Biochem; 1993 Mar; 51(3):290-300. PubMed ID: 8501131 [TBL] [Abstract][Full Text] [Related]
20. Characterization of the osteoblast-like cell phenotype under microgravity conditions in the NASA-approved Rotating Wall Vessel bioreactor (RWV). Rucci N; Migliaccio S; Zani BM; Taranta A; Teti A J Cell Biochem; 2002; 85(1):167-79. PubMed ID: 11891860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]