BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 11866066)

  • 1. Size characterization of incinerator fly ash using sedimentation/steric field-flow fractionation.
    Kimt WS; Lee DW; Lee S
    Anal Chem; 2002 Feb; 74(4):848-55. PubMed ID: 11866066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size-based analysis of incinerator fly ash using gravitational SPLITT fractionation, sedimentation field-flow fractionation, and inductively coupled plasma-atomic emission spectroscopy.
    Kim WS; Park M; Lee DW; Moon MH; Lim H; Lee S
    Anal Bioanal Chem; 2004 Feb; 378(3):746-52. PubMed ID: 14689152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship between the quantity of heavy metal and PAHs in fly ash.
    Wey MY; Chao CY; Chen JC; Yu LJ
    J Air Waste Manag Assoc; 1998 Aug; 48(8):750-6. PubMed ID: 9739627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical and chemical characterization of fly ashes from Swiss waste incineration plants and determination of the ash fraction in the nanometer range.
    Buha J; Mueller N; Nowack B; Ulrich A; Losert S; Wang J
    Environ Sci Technol; 2014 May; 48(9):4765-73. PubMed ID: 24720846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mobilization of iron from coal fly ash was dependent upon the particle size and the source of coal.
    Smith KR; Veranth JM; Lighty JS; Aust AE
    Chem Res Toxicol; 1998 Dec; 11(12):1494-500. PubMed ID: 9860493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of membrane filters and thick fly ash samples by PIXE.
    Havránek V; Hnatowicz V; Kvítek J; Obrusník I
    Biol Trace Elem Res; 1994; 43-45():185-93. PubMed ID: 7710826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Air-substrate mercury exchange associated with landfill disposal of coal combustion products.
    Xin M; Gustin MS; Ladwig K; Pflughoeft-Hassett DF
    J Air Waste Manag Assoc; 2006 Aug; 56(8):1167-76. PubMed ID: 16933649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Occurrence and profiles of chlorinated and brominated polycyclic aromatic hydrocarbons in waste incinerators.
    Horii Y; Ok G; Ohura T; Kannanct K
    Environ Sci Technol; 2008 Mar; 42(6):1904-9. PubMed ID: 18409611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of dibromopolychlorodibenzo-p-dioxins and dibromopolychlorodibenzofurans in municipal waste incinerator fly ash using gas chromatography/mass spectrometry.
    Huang LQ; Tong H; Donnelly JR
    Anal Chem; 1992 May; 64(9):1034-40. PubMed ID: 1590586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous fractionation of fly ash particles by SPUTT for the investigation of PCDD/Fs levels in different sizes of insoluble particles.
    Moon MH; Kang D; Lim H; Oh JE; Chang YS
    Environ Sci Technol; 2002 Oct; 36(20):4416-23. PubMed ID: 12387417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical fractionation of a fly ash sample by a sequential leaching method.
    Polyák K; Hlavay J
    Fresenius J Anal Chem; 2001 Nov; 371(6):838-42. PubMed ID: 11768474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristic of polychlorinated dibenzo-p-dioxins and dibenzofurans in fly ash from incinerators in china.
    Chen T; Yan JH; Lu SY; Li XD; Gu YL; Dai HF; Ni MJ; Cen KF
    J Hazard Mater; 2008 Feb; 150(3):510-4. PubMed ID: 17574738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relation between leaching characteristics of heavy metals and physical properties of fly ashes from typical municipal solid waste incinerators.
    Ni P; Li H; Zhao Y; Zhang J; Zheng C
    Environ Technol; 2017 Sep; 38(17):2105-2118. PubMed ID: 27785981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Leaching Toxicity and Bioaccessibility of Heavy Metals in MSWI Fly Ash with Various Particle Sizes].
    Wang CF; Chen GF; Zhu YC; Yao D; Huang XC; Wang LJ
    Huan Jing Ke Xue; 2016 Dec; 37(12):4891-4898. PubMed ID: 29965333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of copper speciation on the formation of chlorinated aromatics on real municipal solid waste incinerator fly ash.
    Takaoka M; Yamamoto T; Shiono A; Takeda N; Oshita K; Matsumoto T; Tanaka T
    Chemosphere; 2005 Jun; 59(10):1497-505. PubMed ID: 15876392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison between different leaching tests for the evaluation of metal release from fly ash.
    Brunori C; Balzamo S; Morabito R
    Fresenius J Anal Chem; 2001 Nov; 371(6):843-8. PubMed ID: 11768475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of addition of pond ash and fly ash on properties of ash-clay burnt bricks.
    Sarkar R; Singh N; Das SK
    Waste Manag Res; 2007 Dec; 25(6):566-71. PubMed ID: 18229751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strength, leachability and microstructure characterisation of Na2SiO3-activated ground granulated blast-furnace slag solidified MSWI fly ash.
    Zhang D; Liu W; Hou H; He X
    Waste Manag Res; 2007 Oct; 25(5):402-7. PubMed ID: 17985665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Novel process utilizing alkalis assisted hydrothermal process to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water].
    Wang L; Jin J; Li XD; Chi Y; Yan JH
    Huan Jing Ke Xue; 2010 Aug; 31(8):1973-80. PubMed ID: 21090322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Distribution and characters of heavy metals from municipal solid waste incinerator fly ash].
    Wan X; Wang W; Ye TM; Gao XB; Yang JM; Lan YX
    Huan Jing Ke Xue; 2005 May; 26(3):172-5. PubMed ID: 16124493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.